
A Generalized Fault-Tolerant Pipelined Task Scheduling for Decentralized Control of Large

Segmented Systems

Paul THIENPHRAPA, Salvador FALLORINA, Zachariah PURNAJO, Emun PRINCE,

Helen BOUSSALIS, Charles LIU, Khosrow RAD, Jianyu DONG, and Yi ZAHO

Structures, Pointing, and Control Engineering Laboratory

Department of Electrical and Computer Engineering, California State University, Los Angeles

Los Angeles, CA 90032, USA

ABSTRACT

The control of complex, flexible structures requires

substantial amounts of computational power to achieve

precision performance in both space and time. This is

due to the fact that such structures are inherently multiple

input, multiple output systems whose complexities

increase significantly with each additional parameter.

The application of decentralized techniques can reduce

the computational demands of these systems because

multiple lower-order controllers replace a monolithic

controller that would otherwise need to account for

multitudes of system states in their calculations.

Additionally, a decentralized control model provides a

framework for the development of parallel control

algorithms for both the high performance and fault

tolerance of a sophisticated control system.

This paper introduces a novel approach to scheduling

computational tasks on processors in a multiprocessor

environment. The approach is described in detail and

compared against a general straightforward scheduling

mechanism. Pipelined task scheduling features increased

throughput of control computations and fault tolerance,

justifying its use over conventional methods. Both

pipelined and straightforward task scheduling algorithms

have been applied to a physical control-intensive system;

the results indicate a sound design and encourage further

work involving pipelined task scheduling.

Keywords: pipelined task scheduling, task mapping,

parallel processing, decentralized control, control system.

1. INTRODUCTION

Background

To study the control of large segmented systems, the

National Aeronautics and Space Administration (NASA)

in 1994 provided funding to establish the Structures,

Pointing, and Control Engineering (SPACE) Laboratory

at the California State University, Los Angeles. A major

goal of the project is to develop a prototype of the James

Webb Space Telescope (JWST), which is scheduled for

deployment by NASA in the year 2011. As the successor

to the currently-active Hubble Space Telescope, a major

specification of the JWST is the use of a larger optical

mirror to improve upon the Hubble’s image range.

Because a single large mirror introduces difficulties in the

telescope’s transportation, the mirror of the JWST will

consist of several smaller segments whose overall shape

must be dynamically adjusted using an active control

system. However, the quality of images collected by the

telescope is a function of shaping precision in the optical

mirror. Therefore the control processing system must

respond to dynamic disturbances in hard real time.

Figure 1. The SPACE testbed

Structure

The SPACE testbed, pictured in Figure 1, resembles a

Cassegrain telescope with a focal length of 2.4m. Its

performance is designed to emulate an actual space-borne

system [1]. The optical mirror of the testbed is composed

of a ring of six actively controlled hexagonal panels

arranged around a fixed central panel (Figure 2). Forty-

two inductive sensors are placed along the panel edges to

provide measurements of relative panel displacements

and angles. The three voice-coil linear actuators mounted

to the underside of each panel provide three degrees of

freedom. The sensors and actuators are connected to the

digital control processing system respectively via analog-

to-digital and digital-to-analog converters.

Figure 2. Top view of SPACE testbed primary mirror

Embedded Computer Architecture

The SPACE testbed control processing system utilizes a

circuit board configured with four digital signal

processors, each with a clock speed of 12.5 MHz. Each

processor has its own local memory, in addition to global

memory accessible through a common bus (see Figure 3)

[9]. High-speed bidirectional communication ports

provide message passing capabilities amongst processors

[8]. Only one of the four processors has direct access to

the sensor input channels (analog-to-digital converters)

and the actuator output channels (digital-to-analog

converters), giving rise to a master-slave configuration.

Printer

Disk storage

Host

SCSI

Card

Pentek

4200

MIX Card

Pentek

6102

D/A

Pentek

6102

D/A

Pentek

6102

D/A

8 8 8

8 2

VME BUS

Glentek Power Amplifiers

8 8 2

To 18 Actuators

8 8 8

Kaman Bank of Sensor Amplifiers

Pentek

6102

A/D

Pentek

6102

A/D

Pentek

6102

A/D

8 8 2
18 Edge Sensor Signals

(for primary mirror control)

> 70 sensor readings

Pentek

6102

A/D

Pentek

6102

A/D

Pentek

6102

A/D

Pentek

6102

A/D

Pentek

6102

A/D

8 8 8 8 8
Segmented

Telescope

Testbed

88888

Pentek

6102

A/D

Pentek

6102

A/D

8 8

88

Pentek 4285 DSP Board

Proc A

Proc E Proc F

Figure 3. SPACE testbed computer architecture

Performance Requirements

For acceptable performance, the designed control

algorithm must complete computations in 0.5-1.0 ms; that

is, using a sampling rate of 20-40 times the system

bandwidth of 50 Hz [2]. This specification, coupled with

the structural complexity of the telescope, attests to the

system’s real-time computational requirements [10].

2. SHAPING CONTROL

Process Description

Control of the SPACE testbed proceeds as follows.

Random external forces displace the mirror’s segments

into incorrect positions; in the JWST this event would

corrupt images produced by the telescope. The sensors

detect these displacements and convert them into

corresponding electrical signals. Then the analog-to-

digital converters sample these voltages at a frequency

high enough to feed the control system. The master

processor reads the digitized samples and passes them to

the control system, which in turn processes them to

produce resulting control outputs. The master processor

then gathers these results and writes them to the digital-

to-analog converters, which in turn convert the values

into continuous voltages. Finally the voltages are

amplified and sent to the actuators in order to reposition

the displaced panels into a correct configuration. The

control system performs this control cycle iteratively and

continuously to actively maintain precise mirror shaping.

Decentralized Control Model

As described earlier, the testbed consists of a large

number of structural components necessitating multiple

input and output channels. In centralized mathematical

models this configuration could potentially involve

hundreds of states. Even after the application of classical

model reduction techniques, centralized models of the

testbed involve over 200 states. Consequently, the design

of control laws based on conventional methods becomes

exceedingly challenging. As such the consideration of a

decentralized control model is particularly interesting as a

viable approach in circumventing these difficulties [5].

As the testbed’s optical mirror is segmented into six

hexagonal panels, the system is naturally decentralized by

treating each panel and its peripheral components as an

isolated subsystem [3] [4]. Each subsystem, whose

behavior can be governed by simpler local controllers, is

identified by its set of sensor inputs and actuator outputs.

Under decentralized control, a single 200
th
-order

controller is replaced by six 12
th

-order local controllers,

substantially reducing the computational complexity of

the overall system and promoting parallel processing for

high performance and fault tolerance.

Equation 1, derived in [12], is the discrete state-space

representation of the decentralized control computations

that must be performed for each subsystem in each

control cycle. The x(k) are state variables, the e(k) are

sensor signals, and the u(k) are control results. The

constant matrices Φ, Ψ, C, and D account for the

geometry of the structure. Note that controlling a

complex structure remains a nontrivial task even after

Reference

Panel

Subsystem

1

5

4

3

6 2

P 0 P 1 P 2 P 3

Sh a r e d M em o r y

M a in B u s

L o c a l

M em o ry
L o c a l

M e m o ry

L o ca l

M em o ry
L o ca l

Me m o ry

C om mu n ica tio n P o rt s

4 28 5 D S P B o a rd

decentralization reduction, further highlighting the

importance of parallel processing.

)()()(

)()()1(

133311212313

133121121212112

keDkxCku

kekxkx

xxxxx

xxxxx

+=
Ψ+Φ=+

 (1)

While decentralization helps reduce the computational

complexity of control calculations, parallel processing

can help increase control throughput [6]. When both

concepts are applied to a sophisticated system such as the

SPACE testbed, the end result is a real-time, robust

system. It is highly responsive because control tasks can

be distributed among several processors in parallel,

decreasing the turnaround time of control cycles. It is

fault tolerant because the failure of processors results in

gradual performance degradation rather than complete

failure. Furthermore, a decentralized control model

exposes opportunities for parallel processing, so the two

concepts are complementary.

3. REAL-TIME SHAPING MECHANISMS

In order to shorten the time needed to perform shaping

calculations, parallel processing is used. As mentioned

before, the decentralization of the control system reduces

the complexity of the calculations. The decentralization

of the structure into six subsystems creates six

independent control tasks, or simply tasks, that must be

performed continuously. This approach utilizes the full

capacity of the computing system, which houses four

digital signal processors.

In each control cycle we wish to distribute the number of

tasks, M, among the number of available processors, P.

Based on the decentralized model we make the following

assumptions:

1. Each task is not further decomposed.

2. Computational complexities of all tasks are identical

3. Each task takes one control cycle to complete.

4. There are no data dependences among tasks [7].

Straightforward Task Scheduling

In using a straightforward parallel implementation of

decentralized control, processors are statically mapped to

subsystems such that each processor performs control

computations for its respective subsystem only. Although

increased performance is realized when multiple

processors are used in this manner, inefficiency arises if

the number of subsystems M is not an integer multiple of

the number of processors P, M > P. Load imbalance

occurs in such cases because exactly (M mod P)

processors are necessarily responsible for controlling

more subsystems than other processors. Optimality is

sacrificed because processors with lighter loads are idle

while waiting for processors with heavier loads (see

Figure 4). Furthermore this mechanism does not lend

itself favorably towards fault tolerance because the failure

of a single processor will result in the failure of its

corresponding subsystem, an unacceptable scenario.

Figure 4. Load imbalance due to straightforward task

scheduling

Pipelined Task Scheduling

Capitalizing on the nature of decentralized control, a

more sophisticated parallel design approach can be used

to provide both load balancing (i.e. improved

performance) and fault tolerance. At control cycle i, a

given task i, 1 ≤ i ≤ M (corresponding to subsystem i), is

scheduled on processor P1. In the next P-1 control cycles

that task is scheduled on processors P2, P3, …, and Pp, in

that order. The corresponding data streams are

distributed in a cyclic fashion. This process is repeated

every P control cycles, resulting in a task scheduling

scheme that resembles a pipeline. Figure 5 illustrates this

approach with P=4 and M=6.

Figure 5. Pipelined task scheduling

 High Performance: An advantage of

implementing pipelined task scheduling is improvement

in the average number of tasks completed. As mentioned

before, in a straightforward parallel implementation some

processors are idle during some particular control cycles

whenever the number of tasks is not an integer multiple

of the number of processors. On the other hand, with the

pipelined parallel implementation, there are no idle

processors at any given control cycle. In the

straightforward parallel approach, processors may be

assigned one or more tasks per control cycle; whereas in

the pipelined approach processors are always assigned a

single task. This apparent speed-up is essential in

achieving the real-time shaping requirements.

P1
Time

P2

P3

P 4

1

2

3
4

5

6

1

2

3
4

5

6

1

2

3
4

5

6

1

2

3

4

5

6

Control Cycle

Time

Control
Cycle

1

6

5

4

2

1

6

5

3

2

1

6

4

3

2

1

5

4

3

2

6

5

4

3

1

6

5

4

2

1

6

5

3

2

1

6

P 1

P 2

P 3

P 4

 Fault Tolerance: To accommodate the

occurrences of processor failures and their recovery, task

rescheduling mechanisms are used. If during a single

control cycle multiple processors Pk, should happen to

fail, then each remaining processor Pj must stall

execution for one control cycle for each failed processor

where j < k. To illustrate, let P0, …, P4 denote the five

processors in a system. If failures are detected in

processors P1 and P3, then processor P2 would have to

stall execution for one control cycle (P2 < P3), while

processor P0 would need to stall for two (P0 < P1, P3).

Processor P4 would proceed as usual since P4 > P1, P3.

Recovery of previously-failed processors within a single

control cycle can be handled similarly: functioning

processors would stall execution for one control cycle for

each recovered processor with lower-number identifiers.

This stalling approach is used to preserve the pipelined

task sequence and to simplify the buffering complexity –

these are efforts are necessary because the input to a

subsystem task depends partially on the output of that

task from the previous cycle.

 Caveats: Although the above pipeline scheme

increases throughput and provides mechanisms for

handling processor failure and recovery, it introduces

new shortcomings. Because subsystems are not statically

mapped to specific processors, each control cycle

necessarily incurs an increased amount of

communications overhead due to dynamic data

distribution. Furthermore, if the number of tasks M is

much greater than the number of processors P, then there

will be a long delay between two successive iterations of

each individual task, and precision alignment may be

sacrificed. These flaws will be addressed in future work.

Pipelined processing techniques promise to tolerate

failure of one or more processors because processors are

no longer tied to specific subsystems. Instead, control

computations are distributed amongst the processors in a

manner that maintains the pipeline flow structure. Using

the pipelined approach, a better linearity of throughput is

observed as the number of processors increases.

4. RESULTS AND ANALYSES

Both the straightforward and pipelined task scheduling

procedures have been implemented and deployed on the

SPACE testbed. The experiments focus on analyzing the

program throughputs as well as the control system

responses to an initial static disturbance.

Execution Profile
The runtime execution time data, shown in the four tables

below, were recorded from salient points in the programs.

Tables 1 and 2 display the clock cycles each algorithm

consumes in a single control cycle, which is described in

Section 2 (Process Description). The tasks are dissected

into major subtasks for comparison across various

configurations (i.e. scheduling scheme and processor

count). Also shown are the control cycle times in

milliseconds, based on a 12.5 MHz clock speed. Figure 6

shows this data in terms of throughput. Note the better

linearity of throughput provided by pipelining.

Processor Count: 1 2 3 4

Read Sensors 192 192 194 192

Assign Tasks 14 363 340 540

Compute Tasks 24724 12362 8832 8832

Collect Results 12 339 1060 1260

Write Actuators 285 285 285 285

Time (ms): 2.018 1.083 0.857 0.889

Table 1. Straightforward task scheduling execution in

number of clock cycles

Processor Count: 1 2 3 4

Read Sensors 194 194 192 194

Assign Tasks 49 474 892 1324

Compute Tasks 3194 3194 3194 3197

Collect Results 42 313 679 1075

Write Actuators 282 282 283 283

Time (ms): 0.301 0.357 0.419 0.486

Table 2. Pipelined task scheduling execution in number

of clock cycles

Straightforward task scheduling sees an improvement in

execution time as the processor count is increased. The

improvement is not linear because message passing

overhead is introduced with each additional processor.

When increasing from three to four processors, the

control cycle time theoretically cannot improve due to

load imbalance; performance actually degrades due to

message passing involving the deadweight processor.

Throughput of Straightforward and

Pipelined Task Scheduling

0

1

2

3

4

5

6

7

8

9

1 2 3 4

Number of Processors

T
h
ro
u
g
h
p
u
t
(t
a
s
k
s
 p
e
r
m
s
)

Straightforward

Pipelined

Figure 6. Throughput of control tasks

In the pipelined case, message passing time increases

with processor count while computation time remains

constant, resulting in slower control cycle times for

increasing numbers of processors. Of course, more tasks

can be processed when more processors are used since

each processor is assigned one task per control cycle. As

expected, the throughput for pipelined task scheduling is

higher than that of the straightforward method.

As shown in Tables 3 and 4, a greater fraction of the total

time is used for message passing when the number of

processors is increased. At one extreme, 98% of the

execution time is spent performing control computations,

while at the other extreme only 53% of the work is

control. However, the control cycle time of the former

case is over four times slower than that of the latter.

Processor Count: 1 2 3 4

Read Sensors 0.76 1.42 1.81 1.73

Assign Tasks 0.06 2.68 3.17 4.86

Compute Tasks 98.01 91.29 82.46 79.50

Collect Results 0.05 2.50 9.90 11.34

Write Actuators 1.13 2.10 2.66 2.57

Table 3. Straightforward execution in %

Processor Count: 1 2 3 4

Read Sensors 5.16 4.35 3.66 3.19

Assign Tasks 1.30 10.63 17.02 21.80

Compute Tasks 84.92 71.66 60.95 52.64

Collect Results 1.12 7.02 12.96 17.70

Write Actuators 7.50 6.33 5.40 4.66

Table 4. Pipelined execution in %

Depending on the number of subsystems and on real-time

requirements, there is an eventual tradeoff between

computation and message passing, limiting the number of

processors that can be effectively used. Given the four

processors in the SPACE testbed, three processors is best

when implementing straightforward scheduling, while

four is best for pipelined task scheduling.

Control System Response
Information about the response of the control system to

an applied static disturbance was gathered by recording

all sensor data samples and plotting them offline. The

plots, included below, demonstrate the functionality for

both straightforward and pipelined task scheduling.

Figure 7 shows the results of using straightforward

scheduling with one, two, and three processors, while

Figure 8 shows the results of pipelined scheduling with

two, three, and four processors. In all cases, the initial

disturbance can be seen as a large displacement at the

beginning of the experiment. Over time the control

system stabilizes each panel; in the plots this event

appears as a horizontal asymptote. The fuzziness of the

graphs represents a small amount of acceptable steady-

state error. The offset in the displacement axes between

the two plots is likely caused by the difficulty of

reproducing disturbances to within a fraction of a

millimeter.

Figure 7. Control response – straightforward scheduling

Figure 8. Control response – pipelined scheduling

For straightforward task scheduling, it is apparent that

using more processors to perform calculations results in

faster shaping. This same trait can also be seen in

pipelined task scheduling, with significant speedup when

four processors are utilized. Comparing the pipelined and

straightforward approaches with three processors, the

difference in the shaping time is minimal.

The shape of the stabilization plot in the straightforward

case is the same for different numbers of processors

because all six subsystems are processed in every control

cycle. On the other hand, stabilization under pipelining

exhibits different ripple delays for different numbers of

processors. This is likely the result of different numbers

of subsystems being processed per control cycle,

depending on the number of processors present.

Particularly in the two-processor pipelined scenario, the

system appears to stabilize slowly due to an underdamped

response, as only two subsystems are controlled per

control cycle.

Panels converge to a steady state only slightly faster in

the straightforward scheme than in the pipelined

technique. For example, the speculation that the

straightforward parallel architecture with three processors

would perform shaping faster the pipelined architecture

with three processors holds true. Because the shape

response is satisfactory and the time data is acceptable,

these experiments encourage further work in pipelined

task mapping. After the application of message passing

optimizations, the pipelined implementation can

demonstrate performance rivaling that of straightforward

scheduling.

5. CONCLUSIONS AND FUTURE WORK

Proper execution and reasonable performance are realized

under pipelined task scheduling, as the results indicate.

This elementary proposed scheme, however, is not

without weaknesses. Some overhead is incurred when

using dynamic scheduling due to the extra message

passing activities. The results show that this overhead is

minor but can be improved upon nonetheless. Also, a

starvation problem arises with small numbers of

processors because subsystems are not controlled in every

control cycle. The problem manifests itself as an

underdamped response. To eliminate this flaw, a more

advanced pipelining scheme is being studied – group

pipelining. In this method, small sets of tasks, as opposed

to single tasks, are assigned to individual processors in a

single control cycle. Both the communications overhead

and the delay between two successive iterations of each

task are thus reduced at the lesser expense of an increased

control cycle time. Designing the discrete controllers to

accommodate delay cycles represents another option.

Experimental data show that pipelined task scheduling

yields acceptable responses while allowing for dynamic

reconfiguration to tolerate failure. Continued work will

evolve this method into a promising solution for the

SPACE testbed and other applications.

In addition to message passing improvements, group

pipelining, and general optimizations, future work on the

testbed’s embedded computing system includes fault

detection and reconfiguration.

This work was supported by NASA under Grant URC

NCC 4158. Special thanks go to all the faculty and

students associated with the SPACE Laboratory for their

technical and moral support.

6. REFERENCES

[1] H. Stockman, The Next Generation Space

Telescope: Visiting a Time When Galaxies Were
Young, June 1997.

[2] H. Boussalis, Decentralization of Large Space-

borne Telescopes, Proceedings of the 1994 SPIE

Symposium on Astronomical Telescopes, 1994.

[3] H. Boussalis, Mirmirani, M., Chassiakos, A., and

Rad, K., The Use of Decentralized Control in the

Design of a Large Segmented Space Reflector,

Control and Structures Research Laboratory,

California State University, Los Angeles Final

Report, 1996.

[4] H. Boussalis, Mirmirani, M., Rad, K., Morales, M.,

Velazquez, E., Chassiakos, A., and Luzardo, J.A.,

The Use of Decentralized Control in the Design of

a Large Segmented Space Reflector, NASA URC

Technical Conference, Albuquerque, NM, 1997.

[5] D. Siljak, Decentralized Control of Complex

Systems, New York, Academic, 1991.

[6] I. Foster, Designing and Building Parallel

Programs, Addison-Wesley Publishing Company,

Inc., 1995.

[7] J. Hennessy, and Patterson, D., Computer

Architecture: a Quantitative Approach, Morgan

publishing, San Francisco, CA, 1990.

[8] TMS320C4x User’s Guide, Texas Instruments, Inc.,

1991.

[9] Octal TMS320C40 Processor Manual, Pentek,

1998.

[10] J. Liu, Real-time Systems, Prentice-Hall, Inc., 2000.

[11] H. Boussalis, Kosmatopoulos, E.B., Mirmirani, M.,

and Ioannou, P.A., Adaptive Control of Multi-

variable Nonlinear Systems with Application to a

Large Segmented Reflector, ACC 1998.

[12] S. Fallorina, Boussalis, H., Liu, C., Rad, K., Dong,

J., Nasser, D., and Thienphrapa, P., A Generic

Pipelined Task Scheduling Algorithm for Fault-

tolerant Decentralized Control of a Segmented

Telescope Testbed, Proceedings of ASME 2004

DETC and CIE, 2004.

