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ABSTRACT 

 

The control of complex, flexible structures requires 

substantial amounts of computational power to achieve 

precision performance in both space and time.  This is 

due to the fact that such structures are inherently multiple 

input, multiple output systems whose complexities 

increase significantly with each additional parameter.  

The application of decentralized techniques can reduce 

the computational demands of these systems because 

multiple lower-order controllers replace a monolithic 

controller that would otherwise need to account for 

multitudes of system states in their calculations.  

Additionally, a decentralized control model provides a 

framework for the development of parallel control 

algorithms for both the high performance and fault 

tolerance of a sophisticated control system. 

 

This paper introduces a novel approach to scheduling 

computational tasks on processors in a multiprocessor 

environment.  The approach is described in detail and 

compared against a general straightforward scheduling 

mechanism.  Pipelined task scheduling features increased 

throughput of control computations and fault tolerance, 

justifying its use over conventional methods.  Both 

pipelined and straightforward task scheduling algorithms 

have been applied to a physical control-intensive system; 

the results indicate a sound design and encourage further 

work involving pipelined task scheduling. 

 

Keywords: pipelined task scheduling, task mapping, 

parallel processing, decentralized control, control system. 

 

 

1. INTRODUCTION 

 

Background 

To study the control of large segmented systems, the 

National Aeronautics and Space Administration (NASA) 

in 1994 provided funding to establish the Structures, 

Pointing, and Control Engineering (SPACE) Laboratory 

at the California State University, Los Angeles.  A major 

goal of the project is to develop a prototype of the James 

Webb Space Telescope (JWST), which is scheduled for 

deployment by NASA in the year 2011.  As the successor 

to the currently-active Hubble Space Telescope, a major 

specification of the JWST is the use of a larger optical 

mirror to improve upon the Hubble’s image range.  

Because a single large mirror introduces difficulties in the 

telescope’s transportation, the mirror of the JWST will 

consist of several smaller segments whose overall shape 

must be dynamically adjusted using an active control 

system.  However, the quality of images collected by the 

telescope is a function of shaping precision in the optical 

mirror.  Therefore the control processing system must 

respond to dynamic disturbances in hard real time. 

 

 

Figure 1.  The SPACE testbed 

 

Structure 

The SPACE testbed, pictured in Figure 1, resembles a 

Cassegrain telescope with a focal length of 2.4m.  Its 

performance is designed to emulate an actual space-borne 

system [1].  The optical mirror of the testbed is composed 

of a ring of six actively controlled hexagonal panels 

arranged around a fixed central panel (Figure 2).  Forty-



two inductive sensors are placed along the panel edges to 

provide measurements of relative panel displacements 

and angles.  The three voice-coil linear actuators mounted 

to the underside of each panel provide three degrees of 

freedom.  The sensors and actuators are connected to the 

digital control processing system respectively via analog-

to-digital and digital-to-analog converters. 

 

 

Figure 2. Top view of SPACE testbed primary mirror 

 

Embedded Computer Architecture 

The SPACE testbed control processing system utilizes a 

circuit board configured with four digital signal 

processors, each with a clock speed of 12.5 MHz.  Each 

processor has its own local memory, in addition to global 

memory accessible through a common bus (see Figure 3) 

[9].  High-speed bidirectional communication ports 

provide message passing capabilities amongst processors 

[8].  Only one of the four processors has direct access to 

the sensor input channels (analog-to-digital converters) 

and the actuator output channels (digital-to-analog 

converters), giving rise to a master-slave configuration. 
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Figure 3. SPACE testbed computer architecture 

 

Performance Requirements 

For acceptable performance, the designed control 

algorithm must complete computations in 0.5-1.0 ms; that 

is, using a sampling rate of 20-40 times the system 

bandwidth of 50 Hz [2].  This specification, coupled with 

the structural complexity of the telescope, attests to the 

system’s real-time computational requirements [10]. 

 

 

2. SHAPING CONTROL 

 

Process Description 

Control of the SPACE testbed proceeds as follows.  

Random external forces displace the mirror’s segments 

into incorrect positions; in the JWST this event would 

corrupt images produced by the telescope.  The sensors 

detect these displacements and convert them into 

corresponding electrical signals.  Then the analog-to-

digital converters sample these voltages at a frequency 

high enough to feed the control system.  The master 

processor reads the digitized samples and passes them to 

the control system, which in turn processes them to 

produce resulting control outputs.  The master processor 

then gathers these results and writes them to the digital-

to-analog converters, which in turn convert the values 

into continuous voltages.  Finally the voltages are 

amplified and sent to the actuators in order to reposition 

the displaced panels into a correct configuration.  The 

control system performs this control cycle iteratively and 

continuously to actively maintain precise mirror shaping. 

 

Decentralized Control Model 

As described earlier, the testbed consists of a large 

number of structural components necessitating multiple 

input and output channels.  In centralized mathematical 

models this configuration could potentially involve 

hundreds of states.  Even after the application of classical 

model reduction techniques, centralized models of the 

testbed involve over 200 states.  Consequently, the design 

of control laws based on conventional methods becomes 

exceedingly challenging.  As such the consideration of a 

decentralized control model is particularly interesting as a 

viable approach in circumventing these difficulties [5].  

As the testbed’s optical mirror is segmented into six 

hexagonal panels, the system is naturally decentralized by 

treating each panel and its peripheral components as an 

isolated subsystem [3] [4].  Each subsystem, whose 

behavior can be governed by simpler local controllers, is 

identified by its set of sensor inputs and actuator outputs.  

Under decentralized control, a single 200
th
-order 

controller is replaced by six 12
th

-order local controllers, 

substantially reducing the computational complexity of 

the overall system and promoting parallel processing for 

high performance and fault tolerance. 

 

Equation 1, derived in [12], is the discrete state-space 

representation of the decentralized control computations 

that must be performed for each subsystem in each 

control cycle.  The x(k) are state variables, the e(k) are 

sensor signals, and the u(k) are control results.  The 

constant matrices Φ, Ψ, C, and D account for the 

geometry of the structure.  Note that controlling a 

complex structure remains a nontrivial task even after 
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decentralization reduction, further highlighting the 

importance of parallel processing. 
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While decentralization helps reduce the computational 

complexity of control calculations, parallel processing 

can help increase control throughput [6].  When both 

concepts are applied to a sophisticated system such as the 

SPACE testbed, the end result is a real-time, robust 

system.  It is highly responsive because control tasks can 

be distributed among several processors in parallel, 

decreasing the turnaround time of control cycles.  It is 

fault tolerant because the failure of processors results in 

gradual performance degradation rather than complete 

failure.  Furthermore, a decentralized control model 

exposes opportunities for parallel processing, so the two 

concepts are complementary. 

 

 

3. REAL-TIME SHAPING MECHANISMS 

 

In order to shorten the time needed to perform shaping 

calculations, parallel processing is used.  As mentioned 

before, the decentralization of the control system reduces 

the complexity of the calculations.  The decentralization 

of the structure into six subsystems creates six 

independent control tasks, or simply tasks, that must be 

performed continuously.  This approach utilizes the full 

capacity of the computing system, which houses four 

digital signal processors. 

 

In each control cycle we wish to distribute the number of 

tasks, M, among the number of available processors, P.  

Based on the decentralized model we make the following 

assumptions: 

 

1. Each task is not further decomposed. 

2. Computational complexities of all tasks are identical 

3. Each task takes one control cycle to complete. 

4. There are no data dependences among tasks [7]. 

 

Straightforward Task Scheduling 

In using a straightforward parallel implementation of 

decentralized control, processors are statically mapped to 

subsystems such that each processor performs control 

computations for its respective subsystem only. Although 

increased performance is realized when multiple 

processors are used in this manner, inefficiency arises if 

the number of subsystems M is not an integer multiple of 

the number of processors P, M > P. Load imbalance 

occurs in such cases because exactly (M mod P) 

processors are necessarily responsible for controlling 

more subsystems than other processors. Optimality is 

sacrificed because processors with lighter loads are idle 

while waiting for processors with heavier loads (see 

Figure 4). Furthermore this mechanism does not lend 

itself favorably towards fault tolerance because the failure 

of a single processor will result in the failure of its 

corresponding subsystem, an unacceptable scenario. 

 

 

Figure 4. Load imbalance due to straightforward task 

scheduling 

 

Pipelined Task Scheduling 

Capitalizing on the nature of decentralized control, a 

more sophisticated parallel design approach can be used 

to provide both load balancing (i.e. improved 

performance) and fault tolerance.  At control cycle i, a 

given task i, 1 ≤ i ≤ M (corresponding to subsystem i), is 

scheduled on processor P1.  In the next P-1 control cycles 

that task is scheduled on processors P2, P3, …, and Pp, in 

that order.  The corresponding data streams are 

distributed in a cyclic fashion.  This process is repeated 

every P control cycles, resulting in a task scheduling 

scheme that resembles a pipeline.  Figure 5 illustrates this 

approach with P=4 and M=6. 

 

 

Figure 5. Pipelined task scheduling 

 

 High Performance:  An advantage of 

implementing pipelined task scheduling is improvement 

in the average number of tasks completed. As mentioned 

before, in a straightforward parallel implementation some 

processors are idle during some particular control cycles 

whenever the number of tasks is not an integer multiple 

of the number of processors. On the other hand, with the 

pipelined parallel implementation, there are no idle 

processors at any given control cycle. In the 

straightforward parallel approach, processors may be 

assigned one or more tasks per control cycle; whereas in 

the pipelined approach processors are always assigned a 

single task. This apparent speed-up is essential in 

achieving the real-time shaping requirements. 
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 Fault Tolerance:  To accommodate the 

occurrences of processor failures and their recovery, task 

rescheduling mechanisms are used.  If during a single 

control cycle multiple processors Pk, should happen to 

fail, then each remaining processor Pj must stall 

execution for one control cycle for each failed processor 

where j < k.  To illustrate, let P0, …, P4 denote the five 

processors in a system.  If failures are detected in 

processors P1 and P3, then processor P2 would have to 

stall execution for one control cycle (P2 < P3), while 

processor P0 would need to stall for two (P0 < P1, P3). 

Processor P4 would proceed as usual since P4 > P1, P3.  

Recovery of previously-failed processors within a single 

control cycle can be handled similarly: functioning 

processors would stall execution for one control cycle for 

each recovered processor with lower-number identifiers.  

This stalling approach is used to preserve the pipelined 

task sequence and to simplify the buffering complexity – 

these are efforts are necessary because the input to a 

subsystem task depends partially on the output of that 

task from the previous cycle. 

 

 Caveats:  Although the above pipeline scheme 

increases throughput and provides mechanisms for 

handling processor failure and recovery, it introduces 

new shortcomings.  Because subsystems are not statically 

mapped to specific processors, each control cycle 

necessarily incurs an increased amount of 

communications overhead due to dynamic data 

distribution.  Furthermore, if the number of tasks M is 

much greater than the number of processors P, then there 

will be a long delay between two successive iterations of 

each individual task, and precision alignment may be 

sacrificed.  These flaws will be addressed in future work. 

  

Pipelined processing techniques promise to tolerate 

failure of one or more processors because processors are 

no longer tied to specific subsystems. Instead, control 

computations are distributed amongst the processors in a 

manner that maintains the pipeline flow structure. Using 

the pipelined approach, a better linearity of throughput is 

observed as the number of processors increases. 

 

 

4. RESULTS AND ANALYSES 

 

Both the straightforward and pipelined task scheduling 

procedures have been implemented and deployed on the 

SPACE testbed.  The experiments focus on analyzing the 

program throughputs as well as the control system 

responses to an initial static disturbance. 

 

Execution Profile 
The runtime execution time data, shown in the four tables 

below, were recorded from salient points in the programs.  

Tables 1 and 2 display the clock cycles each algorithm 

consumes in a single control cycle, which is described in 

Section 2 (Process Description).  The tasks are dissected 

into major subtasks for comparison across various 

configurations (i.e. scheduling scheme and processor 

count).  Also shown are the control cycle times in 

milliseconds, based on a 12.5 MHz clock speed.  Figure 6 

shows this data in terms of throughput.  Note the better 

linearity of throughput provided by pipelining. 

 

Processor Count: 1 2 3 4 

Read Sensors 192 192 194 192 

Assign Tasks 14 363 340 540 

Compute Tasks 24724 12362 8832 8832 

Collect Results 12 339 1060 1260 

Write Actuators 285 285 285 285 

Time (ms): 2.018 1.083 0.857 0.889 

Table 1. Straightforward task scheduling execution in 

number of clock cycles 

 

Processor Count: 1 2 3 4 

Read Sensors 194 194 192 194 

Assign Tasks 49 474 892 1324 

Compute Tasks 3194 3194 3194 3197 

Collect Results 42 313 679 1075 

Write Actuators 282 282 283 283 

Time (ms): 0.301 0.357 0.419 0.486 

Table 2. Pipelined task scheduling execution in number 

of clock cycles 

 

Straightforward task scheduling sees an improvement in 

execution time as the processor count is increased.  The 

improvement is not linear because message passing 

overhead is introduced with each additional processor.  

When increasing from three to four processors, the 

control cycle time theoretically cannot improve due to 

load imbalance; performance actually degrades due to 

message passing involving the deadweight processor. 
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Figure 6. Throughput of control tasks 

 

In the pipelined case, message passing time increases 

with processor count while computation time remains 



constant, resulting in slower control cycle times for 

increasing numbers of processors.  Of course, more tasks 

can be processed when more processors are used since 

each processor is assigned one task per control cycle.  As 

expected, the throughput for pipelined task scheduling is 

higher than that of the straightforward method. 

 

As shown in Tables 3 and 4, a greater fraction of the total 

time is used for message passing when the number of 

processors is increased.  At one extreme, 98% of the 

execution time is spent performing control computations, 

while at the other extreme only 53% of the work is 

control.  However, the control cycle time of the former 

case is over four times slower than that of the latter. 

 

Processor Count: 1 2 3 4 

Read Sensors 0.76 1.42 1.81 1.73 

Assign Tasks 0.06 2.68 3.17 4.86 

Compute Tasks 98.01 91.29 82.46 79.50 

Collect Results 0.05 2.50 9.90 11.34 

Write Actuators 1.13 2.10 2.66 2.57 

Table 3. Straightforward execution in % 

 

Processor Count: 1 2 3 4 

Read Sensors 5.16 4.35 3.66 3.19 

Assign Tasks 1.30 10.63 17.02 21.80 

Compute Tasks 84.92 71.66 60.95 52.64 

Collect Results 1.12 7.02 12.96 17.70 

Write Actuators 7.50 6.33 5.40 4.66 

Table 4. Pipelined execution in % 

 

Depending on the number of subsystems and on real-time 

requirements, there is an eventual tradeoff between 

computation and message passing, limiting the number of 

processors that can be effectively used.  Given the four 

processors in the SPACE testbed, three processors is best 

when implementing straightforward scheduling, while 

four is best for pipelined task scheduling. 

 

Control System Response 
Information about the response of the control system to 

an applied static disturbance was gathered by recording 

all sensor data samples and plotting them offline.  The 

plots, included below, demonstrate the functionality for 

both straightforward and pipelined task scheduling.  

Figure 7 shows the results of using straightforward 

scheduling with one, two, and three processors, while 

Figure 8 shows the results of pipelined scheduling with 

two, three, and four processors.  In all cases, the initial 

disturbance can be seen as a large displacement at the 

beginning of the experiment.  Over time the control 

system stabilizes each panel; in the plots this event 

appears as a horizontal asymptote.  The fuzziness of the 

graphs represents a small amount of acceptable steady-

state error.  The offset in the displacement axes between 

the two plots is likely caused by the difficulty of 

reproducing disturbances to within a fraction of a 

millimeter. 

 

 

Figure 7. Control response – straightforward scheduling 

 

 

Figure 8. Control response – pipelined scheduling 

 

For straightforward task scheduling, it is apparent that 

using more processors to perform calculations results in 

faster shaping.  This same trait can also be seen in 

pipelined task scheduling, with significant speedup when 

four processors are utilized.  Comparing the pipelined and 

straightforward approaches with three processors, the 

difference in the shaping time is minimal. 

 

The shape of the stabilization plot in the straightforward 

case is the same for different numbers of processors 

because all six subsystems are processed in every control 

cycle.  On the other hand, stabilization under pipelining 

exhibits different ripple delays for different numbers of 

processors.  This is likely the result of different numbers 

of subsystems being processed per control cycle, 

depending on the number of processors present.  

Particularly in the two-processor pipelined scenario, the 

system appears to stabilize slowly due to an underdamped 

response, as only two subsystems are controlled per 

control cycle. 



 

Panels converge to a steady state only slightly faster in 

the straightforward scheme than in the pipelined 

technique.  For example, the speculation that the 

straightforward parallel architecture with three processors 

would perform shaping faster the pipelined architecture 

with three processors holds true.  Because the shape 

response is satisfactory and the time data is acceptable, 

these experiments encourage further work in pipelined 

task mapping.  After the application of message passing 

optimizations, the pipelined implementation can 

demonstrate performance rivaling that of straightforward 

scheduling. 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

Proper execution and reasonable performance are realized 

under pipelined task scheduling, as the results indicate.  

This elementary proposed scheme, however, is not 

without weaknesses.  Some overhead is incurred when 

using dynamic scheduling due to the extra message 

passing activities.  The results show that this overhead is 

minor but can be improved upon nonetheless.  Also, a 

starvation problem arises with small numbers of 

processors because subsystems are not controlled in every 

control cycle.  The problem manifests itself as an 

underdamped response.  To eliminate this flaw, a more 

advanced pipelining scheme is being studied – group 

pipelining.  In this method, small sets of tasks, as opposed 

to single tasks, are assigned to individual processors in a 

single control cycle.  Both the communications overhead 

and the delay between two successive iterations of each 

task are thus reduced at the lesser expense of an increased 

control cycle time.  Designing the discrete controllers to 

accommodate delay cycles represents another option. 

 

Experimental data show that pipelined task scheduling 

yields acceptable responses while allowing for dynamic 

reconfiguration to tolerate failure.  Continued work will 

evolve this method into a promising solution for the 

SPACE testbed and other applications. 

 

In addition to message passing improvements, group 

pipelining, and general optimizations, future work on the 

testbed’s embedded computing system includes fault 

detection and reconfiguration. 
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