
A FAULT-TOLERANT DISTRIBUTED DATA FLOW

ARCHITECTURE FOR REAL-TIME

DECENTRALIZED CONTROL

Salvador Fallorina, Paul Thienphrapa, Rodrigo Luna, Vu Khuong,

Helen Boussalis, Charles Liu, Jane Dong, Khosrow Rad, Wing Ho

Department of Electrical & Computer Engineering, California State University, Los Angeles,

5151 State University Drive, Los Angeles, CA, USA

Keywords: Distributed data flow, pipelined task mapping, scheduling, fault-tolerance, real-time decentralized control

Abstract: Complex control-oriented structures are inherently multiple input, multiple output systems whose

complexities increase significantly with each additional parameter. When precision performance in both

space and time is required, these types of applications can be described as real-time systems that demand

substantial amounts of computational power in order to function properly. The failure of a subsystem can be

viewed as the extreme case of a non-real-time response, so the ability of a system to recognize and recover

from faults, and continue operating in at least some degraded mode, is of crucial importance. Furthermore,

the issue of fault-tolerance naturally arises because real-time control systems are often placed in mission-

critical contexts. Decentralized control techniques, in which multiple lower-order controllers replace a

monolithic controller, provide a framework for embedded parallel computing to facilitate the fault-tolerance

and high performance of a sophisticated control system.

This paper introduces a fault-tolerant concept to the handling of data flows in multiprocessor environments

that are reminiscent of control systems. The design is described in detail and compared against a typical

master-slave configuration. A distributed data flow architecture embraces tolerance to processor failures

while satisfying real-time constraints, justifying its use over conventional methods. Both master-slave and

distributed data flow designs have been studied with regards to a physical control-intensive system; the

conclusions indicate a sound design and encourage the further division of computational responsibilities in

order to promote fault-tolerance in embedded control processing systems.

1 INTRODUCTION

Fault-tolerance may not be an overriding concern in
commodity electronics such as microwave ovens
and wristwatches; indeed, the development of
reliability features for such items may be an
inefficient venture. Fault-tolerance becomes an
essential characteristic of systems, however, when
the cost of failure is significant. The metrics used to
analyze this cost include safety and financial
concerns, so continuous uptime is a topic of interest.
Additionally the lifetimes of engineering systems are
limited by inherent manufacturing defects (Worden
& Barton, 2004), but fault-tolerance can provide for
graceful degradation, thereby creating a grace period
between fully operational and failed states during
which failure costs can be minimized.

The research described in this paper has been
conducted in the Structures, Pointing, and Control
Engineering (SPACE) Laboratory. The National
Aeronautics and Space Administration (NASA)
provided funding in 1994 to establish the SPACE
Laboratory at the California State University, Los
Angeles to study the control of complex structures.
A major goal of this ongoing project is to develop
control systems that exhibit fault-tolerance and real-
time response for the James Webb Space Telescope
(JWST), which is scheduled for deployment by
NASA in the year 2011. As the successor to the
currently-active Hubble Space Telescope, a major
specification of the JWST is the use of a larger
optical mirror to improve upon the quality of images
produced by the Hubble. Because there is an
apparent difficulty in transporting a single large

mirror in current launch vehicles, the mirror of the
JWST will be divided into smaller segments whose
overall shape must be dynamically adjusted by an
active control system. However, the quality of
images collected by the telescope is a function of
shaping and pointing precision, among other duties.
Therefore the control processing system must
maintain a maximal level of fault-tolerance and high
performance to maximize the utility of the telescope.

Figure 1: The SPACE testbed.

Specifically, in an embedded multiprocessor

platform, the computing system must be able to
transparently perform processing tasks while
adjusting for the failure and recovery of processors.
In the event of processor failure, the computer
architecture must be reconfigured so that working
processors can assume any data handling
responsibilities previously held by failed processors.
In a converse manner, reconfiguration must be
performed when processors are recovered in order to
minimize the reliance of the system on any single
processor. By establishing mechanisms for fault-
tolerance, real-time performance can be realized
even when processor failures occur.

This paper is organized as follows. A description
of the SPACE testbed, on which research for this
project is conducted, is given in Section 2. Section 3
details the theoretical foundations for decentralized
control of the system. In Section 4, control
processing from the perspective of the computing
system is described. Section 5 presents the data flow

architectures under consideration, while Section 6
proposes a design that utilizes the novel data flow
mechanism to achieve processor fault-tolerance in
real-time decentralized control. Concluding remarks
are provided in Section 7 along with future plans.

Figure 2: SPACE testbed primary mirror.

2 SYSTEM DESCRIPTION

2.1 Peripheral Structure

The SPACE testbed, pictured in Figure 1, resembles
a Cassegrain telescope with a 2.4m focal length. Its
performance is designed to emulate an actual space-
borne system (Stockman, 1997). As mentioned
above, the large optical mirror of the JWST will be
segmented so as to allow for conveyance via
contemporary launch vehicles. Figure 2 illustrates
the segmented mirror configuration present on the
SPACE testbed. A ring of six actively-controlled
hexagonal panels is arranged around a fixed central
panel. Three voice-coil linear actuators are mounted
to the underside of each panel, providing each with
three degrees of freedom. Twenty-four inductive
sensors are placed at the panel edges to provide
measurements of relative displacements and angles.
During control calculations these 24 sensors are
geometrically virtualized into 18 sensors, in
accordance with the arrangement of the actuators,
for implementation convenience. The actuators and
sensors are linked to the digital control processing
system respectively via digital-to-analog (DAC) and
analog-to-digital converters (ADC).

2.2 Embedded Computing System

The SPACE testbed processing system is configured
with four 32-bit TMS320C40 digital signal
processors. These processors feature a 40ns cycle
time and 30 MIPS/60 MFLOPS maximum ratings.
Each processor has 1 MB of local memory and
access to 1 MB of global memory (Figure 3). High-
speed, bidirectional, half-duplex communication
ports provide a maximum of 20 MB/s message
passing throughput amongst processors. Using a
VMEbus interface with a VIC64 chip acting as a bus
arbiter, each of the four processors has direct access
to the sensor input channels (ADC) and the actuator
output channels (DAC), giving rise to a myriad of
possible data flow configurations.

As an important note, the computing architecture
for the SPACE project is fixed. Therefore all
attempts at high performance and fault-tolerance
must be based on the existing hardware.

Figure 3: SPACE testbed computing system.

2.3 Performance Requirements

To achieve the intended performance goals, any
algorithm designed for this control application must
complete computations in 0.8-1.6 ms per sample;
that is, using a sampling rate of 20-40 times the
system bandwidth of 30 Hz (Boussalis, 1994). This
specification, coupled with the structural complexity
of the telescope, attests to the real-time
computational requirements. Because sporadic
failure of processors to meet this time restriction is
of minor consequence, this application fits the soft
real-time systems category; however, prolonged
non-real-time performance will result in the
degradation of the quality of images collected by the
telescope.

3 DECENTRALIZED CONTROL

FOR THE TESTBED

Control of sizeable structures is an ongoing topic of
interest in space exploration programs. As described
previously, the SPACE testbed consists of a large
number of structural components whose behavior is
guided by a complement of sensors and actuators,
leading to mathematical models that involve
hundreds of states. Even after the application of
classical model reduction techniques, a centralized
control model of the telescope testbed has over 200
states complementing 18 virtual sensors and 18
actuators. Consequently, the design of control laws
based on conventional methodologies becomes
exceedingly unwieldy. Decentralized control then
becomes an increasingly attractive approach in
circumventing this difficulty concerning the
dimensionality problem.

Due to the complex nature of the SPACE
testbed, decentralized techniques are employed for
the development of simplified laws to accomplish
reflector shape control. The result is the physical
decentralization of the structure into six lower-order
subsystems.

The system equations of motion assume the form

dBuBKM 21 +=+ δδ&& . (1)

M refers to the mass matrix, and K the stiffness

matrix, while δ is a position coordinate vector, B1
and B2 are force amplitude matrices, u is a control-
input vector and d is a disturbance vector. For
control purposes the following state-space
representation of the system is derived from (1).

Cxy

BuAxx

=
+=&

 (2)

Decomposing the system (2) into six subsystems

according to the physical structure depicted in
Figure 2 yields (3) as follows.

iii

iii

i

iiiiiii

xCy

dBuBxAxAx

=

+++= ∑
=

21

6

1

&
 (3)

The first term of (3) is its isolated component.

iii xAx =& , (4)

[]T

i

T

iix δδ &= (5)

As shown in Figure 4, the system is naturally
decentralized by treating each of the six peripheral
segments of the primary mirror and its associated
supporting structure as an isolated subsystem. Each
decentralized controller can be of arbitrary type, as
hinted in the figure; an H∞ controller is typically
used for testing. Each subsystem is identified by
three control inputs to the actuators and three control
outputs which are measured by the edge sensors.
Note that the definitions of inputs and outputs are
context-sensitive. The sensor signals are outputs of
the control system, but are inputs to the computing
system. A similar situation exists with regards to
actuator signals. Local control algorithms are
developed for each of the six isolated subsystems.

We consider discrete control algorithms. The
state-space form embodied in (2) is translated to the
discrete form shown in (6).

)()(

)()()1(

11

111

kxCky

kukxkx

nxrxnrx

mxnxmnxnxnnx

=
Ψ+Φ=+

 (6)

This discrete state equation represents an n

th
-

order system with m inputs and r outputs (from a
computing systems perspective), where Ф is the
state transition matrix, x(k) is the state vector, u(k) is
the vector of sensor signals, and y(k) is the actuator
signal vector. In implementing decentralized control
for the testbed, a single 200

th
-order centralized

controller is replaced by six 12
th

-order local
controllers that run in parallel to maintain the precise
shape of the primary mirror. Such a replacement
reduces the computational complexity of the control
system, and exposes opportunities for both parallel
processing and fault-tolerance. The control
calculations for each of the six subsystems are given
below with n = 12, m = 3, and r = 3.

)()()(

)()()1(

keDkxCku

kekxkx

×+×=
×Ψ+×Φ=+

 (7)

4 CONTROL PROCESS

DESCRIPTION

Given the nature of digital systems, control
computations are performed in discrete cycles, and
sensor readings are sampled accordingly. A control
cycle begins when processors read sensor signals
from the ADC and geometrically transform them
into virtual points that indicate the displacement and
positions of the panels. The next step consists of
calculating control commands for the six
subsystems. A single control task involves the

control calculations for a single subsystem, given in
(7). Resultant control signals are written to the DAC,
amplified, and sent to the actuators to properly
reposition the panels. As mentioned, these steps
must be executed continuously and within a
specified sampling period in order to ensure quality
shaping and system stability.

H Controller
H Controller

Neural NetworkController

2

∞

H Controller
H Controller

Neural NetworkController

2

∞

Σ

Figure 4: Decentralized control system block diagram.

Sequential execution of control tasks using a

single processor is possible, but the disadvantages
that arise include extended execution time and lack
of fault-tolerance. Decentralized controllers present
opportunities for parallel execution during a control
cycle. Parallel processing is thus applied in order to
achieve fault-tolerance and real-time performance.
Based on our model of decentralized control, M = 6
tasks are executed in parallel among P = 4
processors in an iterative fashion.

Whether they are scheduled for execution on
processors in a straightforward, pipelined (Fallorina,
2004, Thienphrapa, 2004), group-pipelined (Roberts,
2004) (see Figure 5), or other fashion, control tasks
must satisfy the following characteristics in order for
this application of decentralized control to work.

1. Each task is not further decomposable.
2. The computational complexities of all tasks are

identical.
3. Each task must complete a control cycle and

cannot be scheduled until its sample of sensor
signals is obtained.

4. There is no data dependency among the
computational tasks, so different tasks can be
processed in different control cycles in an
arbitrary order.

The computational dependence between the
subsystems is negligible. Thus the six panels of the
primary mirror do not need to cooperate with each
other to achieve precision shaping because local
controllers perform the alignment against a
calibrated parabolic reference. Note that for a
processor to process any number of tasks (Figure 5),
it must have access to the corresponding sample of
sensor signals, the current state vectors, and a means
of sending the actuator output signals to the DAC.
Therefore the design of fault-tolerant data flow
architectures is of utmost importance.

Figure 5: From top to bottom, straightforward, pipelined,

and group-pipelined task scheduling.

5 DATA FLOW ARCHITECTURE

In order to ensure continuous control of the
telescope testbed, an efficient and reliable data flow
architecture needs to be in place that gives each
processor the full set of sensor data.

5.1 Master-slave Data Flow System

One conventional approach structures the flow of
data in a master-slave configuration (Figure 6). In
this method, only one processor, the master, handles
all the data inputs and outputs. The master processor
reads all data from the ADC first-in, first-out (FIFO)
buffers and passes them to each of the slave
processors. Once each processor finishes the control
computations, the results are passed back and
gathered by the master processor, which then
proceeds to send the control commands to the plant.

Figure 6: Master-slave data flow.

This arrangement is simple and straightforward,

but relies on a single processor. The system can be
made to tolerate any slave processor failure, but in
the event the master processor fails, then the entire
computing system fails.

5.2 Distributed Data Flow System

The proposed distributed data flow architecture
detailed here describes the development of a
symmetric computer architecture where all
processors operate identically. In this distributed
data flow architecture (Figure 7), all processing
nodes are capable of handling any input and output
of data. In other words, each processor can read
sensor signals from the ADC buffers independent of
other processors, then perform its subset of the
decentralized control calculations (this subset, i.e.
task(s), is assigned based on the task mapping
mechanism in use (Fallorina, 2004, Thienphrapa,
2004, Roberts, 2004)). Upon completing its
calculations, each processor can then independently
send the results to the plant to command the
appropriate actuators.

5.3 Comparison

This distributed scheme is more compatible with the
concept of decentralized control and facilitates fault-
tolerance by removing the reliance of the system on
any single processor. If one or more processors fail
or recover from failure, the architecture is able to
accommodate for these events and resume normal
operations transparently. This is the distinguishing
advantage of the distributed system over the master-
slave configuration. Failure of the master processor
would lead to immediate failure of an entire master-
slave computing system.

In light of this observation, what warrants
discussion of the master-slave architecture is its
widespread use in situations where failure is not a
pressing concern (e.g. desktop computers), as well
as its ease of implementation. Specifically, the
distributed data flow architecture introduces

Master
P

1

Slave
P

3

Slave
P

4

Slave
P

2

Input:

Sensor Data

Output:

Control Commands

synchronization issues; processors must be
synchronized within a control cycle in order for task
scheduling to transpire correctly. Correctly
implementing this mechanism with synchronization
is nontrivial. Such matters can play a role in the
development costs, development time, and reliability
of the end product.

Figure 7: Distributed data flow.

5.4 Limitations

Although several works in high performance, fault-
tolerant computing were considered, they were
discounted due to the fixed, specialized nature of the
SPACE testbed.

For instance, hardware and software redundancy

described in the literature (Reinhardt, 2000, Khan

2001) are not feasible due to rigid power constraints.

Other approaches assume workstation environments

(Baratloo, 1995, DasGupta, 1999) that do not exhibit

real-time performance. Due to hardware limitations,

reconfigurable circuits (Blanton, 1998) and

proactive fault detection (Siewiorek, 2004) cannot

be used. Fortunately, the control process is

straightforward and does not require sophisticated

task mapping (Choudhary, 1994).

6 DATA FLOW DESIGN

In applying the distributed data flow architecture to
the SPACE testbed computing system, various
challenges arise due to its physically centralized data
bus (Figure 8). Firstly, given the system architecture
and hardware capabilities and limitations, the
implementation of this design method requires more
communication. Sensor data is located in
destructive-read FIFO buffers on different ADC
boards (Figure 8). Therefore, any data read by a
processor is removed from the corresponding buffer
space. If such data is required by the other

processors, point-to-point communication between
the processors will be necessary. Another
practicality is that VMEbus accesses must be time-
shared amongst processors. In addition, task
mapping becomes complicated when integrated with
pipelined task scheduling techniques (Fallorina,
2004, Thienphrapa, 2004, Roberts, 2004).

To implement this distributed data flow
architecture, each processor reads a subset of the
total data and distributes the data amongst each
other. This is achieved by configuring the ADC
boards to send interrupt signals to assigned
processors which read data from the interrupt
source. Each time a processor takes data from the
ADC FIFO buffers, it writes that data to shared
memory where any other node can access it. This
step is necessary because the full set of sensor
samples is generally required to process control
commands for any subsystem task. Future work will
address the effects of using only a subset of these
samples. In the end, all of the data is made equally
available to any processor, producing the logical
effect of distributed data flow.

Figure 8: Distributed data flow on the SPACE testbed.

The architecture of the system board and the

VMEbus connection to the processors are not
conducive to perfect fault tolerance. There are
several bottlenecks in the architecture that do not
have redundancies. However, an abstraction is
created that allows for the design of fault tolerance
that bypasses hardware limitations. Furthermore, an
implementation will demonstrate proof-of-concept

that the proposed solution does indeed support fault-
tolerant real-time decentralized control.

Although fault detection is a rich area of interest
in its own right, it is briefly discussed here as it
pertains to the SPACE testbed. The shared memory,
message passing, and interprocessor interrupt
resources can be used to construct various fault-
tolerance mechanisms. Already considered ideas
include using watchdog, neighbor, and ad hoc
detection methods to indicate the state of processors.

Reconfiguration for faults and recovery must be
efficient in real-time systems. Pipelined task
mapping performs this reconfiguration at the control
task level by dynamically assigning tasks based on
the working state of processors. At the data flow
level, working processors can assume the data
handling duties of failed processors in a state
machine-like fashion. That is, the sensor and
actuator channels that processors access will be
determined by the quantity and identities of the
processors that are failed. The mechanical attribute
of such an approach will foster efficiency.

7 SUMMARY & FUTURE WORK

Costly and mission-critical systems must exhibit
fault-tolerance in order to minimize loss due to
failure. One facet of fault-tolerance provides for a
grace period between fully functional and
nonfunctional states during which steps can be taken
to prepare for ultimate failure. More central to this
project, however, is the uptime. It is desirable for a
space telescope to smoothly continue operation
despite the failure of processors on a multiprocessor
platform, which is a single-event upset in nature and
is a likely occurrence given the operating
environment. With tolerance for processor failure
enabled, a telescope can perform its scientific and
logistical duties with minimal downtime.

The distributed data flow architecture proposed
here has been conceived for fault-tolerant, real-time
decentralized control of a segmented reflector
telescope testbed. In contrast with a master-slave
configuration that has already been implemented,
this approach does not rely on a single processor
because the data input-output can be handled by any
processor. This arrangement facilitates continuous
system operation despite any processor failure.
Future work includes completion of the distributed
data flow architecture, detection and reconfiguration.
Various fault detection and reconfiguration schemes
will be tested and analyzed in addition to issues of
sensor, actuator, and signal converter failure.

8 ACKNOWLEDGEMENTS

This work was supported by NASA under Grant
URC NCC 4158. Special thanks go to all the faculty
and students associated with the SPACE Laboratory.

9 REFERENCES

Baratloo, A. et al. 1995, ‘CALYPSO: a novel software

system for fault-tolerant parallel processing on

distributed platforms’, Proc. IEEE HPDC, PC, VA.

Blanton, R., Goldstein, S., & Schmidt, H. 1998, ‘Tunable

fault tolerance via test and reconfiguration’, Proc.

FTCS, Munich, Germany.

Boussalis, H. 1979, Stability of Large Scale Systems.

Ph.D. dissertation, New Mexico State University.

Boussalis, H. 1994, ‘Decentralization of large space-borne

telescopes’, Proc. SPIE Symposium on Astronomical

Telescopes.

Choudhary, A. et al. 1994, ‘Optimal processor assignment

for a class of pipelined computations’, IEEE

Transactions on Parallel and Distributed Systems, vol.

5, no. 4, pp. 439-445.

DasGupta, B. et al. 1999, ‘Generalized approach towards

the fault diagnosis in any arbitrarily connected

network’, Proc. HiPC, Calcutta, India.

Fallorina, S. et al. 2004, ‘A generic pipelined task

scheduling algorithm for fault-tolerant decentralized

control of a segmented telescope testbed’, Proc. ASME

DETC/CIE, Salt Lake City, UT.

Khan, G., & Wee, S. 2001, ‘Fault-tolerant embedded

computer system-on-chip for endoscope control’,

Proc. ISIC, Singapore.

Reinhardt, S. & Mukherjee, S. 2000, ‘Transient fault

detection via simultaneous multithreading’, Proc.

ISCA, Vancouver, BC.

Roberts, J. et al. 2004, ‘Efficient real-time parallel signal

processing for decentralized control using group-

pipelined scheduling’, Proc. ISNG, Las Vegas, NV.

Siewiorek, D. et al. 2004, ‘Experimental research in

dependable computing at Carnegie Mellon

University’, Proc. WCC, Toulouse, France.

Stockman, H. et al. 1997, The Next Generation Space

Telescope: Visiting a Time When Galaxies Were

Young, The Association of Universities for Research

in Astronomy, Baltimore, MD.

Thienphrapa, P. et al. 2004, ‘A generalized fault-tolerant

pipelined task scheduling for decentralized control of

large segmented systems’, Proc. CCCT, Austin, TX.

Worden, K. & Dulieu-Barton, J.M. 2004, ‘An overview of

intelligent fault detection in systems and structures’,

Structural Health Monitoring, vol. 3, no. 1, pp. 85-98.

