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Abstract: Complex control-oriented structures are inherently multiple input, multiple output systems whose 

complexities increase significantly with each additional parameter. When precision performance in both 

space and time is required, these types of applications can be described as real-time systems that demand 

substantial amounts of computational power in order to function properly. The failure of a subsystem can be 

viewed as the extreme case of a non-real-time response, so the ability of a system to recognize and recover 

from faults, and continue operating in at least some degraded mode, is of crucial importance. Furthermore, 

the issue of fault-tolerance naturally arises because real-time control systems are often placed in mission-

critical contexts. Decentralized control techniques, in which multiple lower-order controllers replace a 

monolithic controller, provide a framework for embedded parallel computing to facilitate the fault-tolerance 

and high performance of a sophisticated control system. 

 

This paper introduces a fault-tolerant concept to the handling of data flows in multiprocessor environments 

that are reminiscent of control systems. The design is described in detail and compared against a typical 

master-slave configuration. A distributed data flow architecture embraces tolerance to processor failures 

while satisfying real-time constraints, justifying its use over conventional methods. Both master-slave and 

distributed data flow designs have been studied with regards to a physical control-intensive system; the 

conclusions indicate a sound design and encourage the further division of computational responsibilities in 

order to promote fault-tolerance in embedded control processing systems. 

1 INTRODUCTION 

Fault-tolerance may not be an overriding concern in 
commodity electronics such as microwave ovens 
and wristwatches; indeed, the development of 
reliability features for such items may be an 
inefficient venture. Fault-tolerance becomes an 
essential characteristic of systems, however, when 
the cost of failure is significant. The metrics used to 
analyze this cost include safety and financial 
concerns, so continuous uptime is a topic of interest. 
Additionally the lifetimes of engineering systems are 
limited by inherent manufacturing defects (Worden 
& Barton, 2004), but fault-tolerance can provide for 
graceful degradation, thereby creating a grace period 
between fully operational and failed states during 
which failure costs can be minimized. 

The research described in this paper has been 
conducted in the Structures, Pointing, and Control 
Engineering (SPACE) Laboratory. The National 
Aeronautics and Space Administration (NASA) 
provided funding in 1994 to establish the SPACE 
Laboratory at the California State University, Los 
Angeles to study the control of complex structures. 
A major goal of this ongoing project is to develop 
control systems that exhibit fault-tolerance and real-
time response for the James Webb Space Telescope 
(JWST), which is scheduled for deployment by 
NASA in the year 2011. As the successor to the 
currently-active Hubble Space Telescope, a major 
specification of the JWST is the use of a larger 
optical mirror to improve upon the quality of images 
produced by the Hubble. Because there is an 
apparent difficulty in transporting a single large 



 

mirror in current launch vehicles, the mirror of the 
JWST will be divided into smaller segments whose 
overall shape must be dynamically adjusted by an 
active control system. However, the quality of 
images collected by the telescope is a function of 
shaping and pointing precision, among other duties. 
Therefore the control processing system must 
maintain a maximal level of fault-tolerance and high 
performance to maximize the utility of the telescope. 
 

 
Figure 1: The SPACE testbed. 

 
Specifically, in an embedded multiprocessor 

platform, the computing system must be able to 
transparently perform processing tasks while 
adjusting for the failure and recovery of processors. 
In the event of processor failure, the computer 
architecture must be reconfigured so that working 
processors can assume any data handling 
responsibilities previously held by failed processors. 
In a converse manner, reconfiguration must be 
performed when processors are recovered in order to 
minimize the reliance of the system on any single 
processor. By establishing mechanisms for fault-
tolerance, real-time performance can be realized 
even when processor failures occur. 

This paper is organized as follows. A description 
of the SPACE testbed, on which research for this 
project is conducted, is given in Section 2. Section 3 
details the theoretical foundations for decentralized 
control of the system. In Section 4, control 
processing from the perspective of the computing 
system is described. Section 5 presents the data flow 

architectures under consideration, while Section 6 
proposes a design that utilizes the novel data flow 
mechanism to achieve processor fault-tolerance in 
real-time decentralized control. Concluding remarks 
are provided in Section 7 along with future plans. 
 

 
Figure 2: SPACE testbed primary mirror. 

2 SYSTEM DESCRIPTION 

2.1 Peripheral Structure  

The SPACE testbed, pictured in Figure 1, resembles 
a Cassegrain telescope with a 2.4m focal length. Its 
performance is designed to emulate an actual space-
borne system (Stockman, 1997). As mentioned 
above, the large optical mirror of the JWST will be 
segmented so as to allow for conveyance via 
contemporary launch vehicles. Figure 2 illustrates 
the segmented mirror configuration present on the 
SPACE testbed. A ring of six actively-controlled 
hexagonal panels is arranged around a fixed central 
panel. Three voice-coil linear actuators are mounted 
to the underside of each panel, providing each with 
three degrees of freedom. Twenty-four inductive 
sensors are placed at the panel edges to provide 
measurements of relative displacements and angles. 
During control calculations these 24 sensors are 
geometrically virtualized into 18 sensors, in 
accordance with the arrangement of the actuators, 
for implementation convenience. The actuators and 
sensors are linked to the digital control processing 
system respectively via digital-to-analog (DAC) and 
analog-to-digital converters (ADC). 



 

2.2 Embedded Computing System 

The SPACE testbed processing system is configured 
with four 32-bit TMS320C40 digital signal 
processors. These processors feature a 40ns cycle 
time and 30 MIPS/60 MFLOPS maximum ratings. 
Each processor has 1 MB of local memory and 
access to 1 MB of global memory (Figure 3). High-
speed, bidirectional, half-duplex communication 
ports provide a maximum of 20 MB/s message 
passing throughput amongst processors. Using a 
VMEbus interface with a VIC64 chip acting as a bus 
arbiter, each of the four processors has direct access 
to the sensor input channels (ADC) and the actuator 
output channels (DAC), giving rise to a myriad of 
possible data flow configurations. 

As an important note, the computing architecture 
for the SPACE project is fixed.  Therefore all 
attempts at high performance and fault-tolerance 
must be based on the existing hardware. 
 

 
Figure 3: SPACE testbed computing system. 

2.3 Performance Requirements 

To achieve the intended performance goals, any 
algorithm designed for this control application must 
complete computations in 0.8-1.6 ms per sample; 
that is, using a sampling rate of 20-40 times the 
system bandwidth of 30 Hz (Boussalis, 1994). This 
specification, coupled with the structural complexity 
of the telescope, attests to the real-time 
computational requirements. Because sporadic 
failure of processors to meet this time restriction is 
of minor consequence, this application fits the soft 
real-time systems category; however, prolonged 
non-real-time performance will result in the 
degradation of the quality of images collected by the 
telescope. 

3 DECENTRALIZED CONTROL 

FOR THE TESTBED 

Control of sizeable structures is an ongoing topic of 
interest in space exploration programs. As described 
previously, the SPACE testbed consists of a large 
number of structural components whose behavior is 
guided by a complement of sensors and actuators, 
leading to mathematical models that involve 
hundreds of states. Even after the application of 
classical model reduction techniques, a centralized 
control model of the telescope testbed has over 200 
states complementing 18 virtual sensors and 18 
actuators. Consequently, the design of control laws 
based on conventional methodologies becomes 
exceedingly unwieldy. Decentralized control then 
becomes an increasingly attractive approach in 
circumventing this difficulty concerning the 
dimensionality problem. 

Due to the complex nature of the SPACE 
testbed, decentralized techniques are employed for 
the development of simplified laws to accomplish 
reflector shape control. The result is the physical 
decentralization of the structure into six lower-order 
subsystems. 

The system equations of motion assume the form 
 

dBuBKM 21 +=+ δδ&& . (1) 

 
M refers to the mass matrix, and K the stiffness 

matrix, while δ  is a position coordinate vector, B1 
and B2 are force amplitude matrices, u is a control-
input vector and d is a disturbance vector. For 
control purposes the following state-space 
representation of the system is derived from (1). 
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Decomposing the system (2) into six subsystems 

according to the physical structure depicted in 
Figure 2 yields (3) as follows. 
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The first term of (3) is its isolated component. 
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As shown in Figure 4, the system is naturally 
decentralized by treating each of the six peripheral 
segments of the primary mirror and its associated 
supporting structure as an isolated subsystem. Each 
decentralized controller can be of arbitrary type, as 
hinted in the figure; an H∞ controller is typically 
used for testing. Each subsystem is identified by 
three control inputs to the actuators and three control 
outputs which are measured by the edge sensors. 
Note that the definitions of inputs and outputs are 
context-sensitive. The sensor signals are outputs of 
the control system, but are inputs to the computing 
system. A similar situation exists with regards to 
actuator signals. Local control algorithms are 
developed for each of the six isolated subsystems. 

We consider discrete control algorithms. The 
state-space form embodied in (2) is translated to the 
discrete form shown in (6). 
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This discrete state equation represents an n

th
-

order system with m inputs and r outputs (from a 
computing systems perspective), where Ф is the 
state transition matrix, x(k) is the state vector, u(k) is 
the vector of sensor signals, and y(k) is the actuator 
signal vector. In implementing decentralized control 
for the testbed, a single 200

th
-order centralized 

controller is replaced by six 12
th

-order local 
controllers that run in parallel to maintain the precise 
shape of the primary mirror. Such a replacement 
reduces the computational complexity of the control 
system, and exposes opportunities for both parallel 
processing and fault-tolerance. The control 
calculations for each of the six subsystems are given 
below with n = 12, m = 3, and r = 3. 
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4 CONTROL PROCESS 

DESCRIPTION 

Given the nature of digital systems, control 
computations are performed in discrete cycles, and 
sensor readings are sampled accordingly. A control 
cycle begins when processors read sensor signals 
from the ADC and geometrically transform them 
into virtual points that indicate the displacement and 
positions of the panels. The next step consists of 
calculating control commands for the six 
subsystems. A single control task involves the 

control calculations for a single subsystem, given in 
(7). Resultant control signals are written to the DAC, 
amplified, and sent to the actuators to properly 
reposition the panels. As mentioned, these steps 
must be executed continuously and within a 
specified sampling period in order to ensure quality 
shaping and system stability. 
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Figure 4: Decentralized control system block diagram. 

 
Sequential execution of control tasks using a 

single processor is possible, but the disadvantages 
that arise include extended execution time and lack 
of fault-tolerance. Decentralized controllers present 
opportunities for parallel execution during a control 
cycle. Parallel processing is thus applied in order to 
achieve fault-tolerance and real-time performance. 
Based on our model of decentralized control, M = 6 
tasks are executed in parallel among P = 4 
processors in an iterative fashion. 

Whether they are scheduled for execution on 
processors in a straightforward, pipelined (Fallorina, 
2004, Thienphrapa, 2004), group-pipelined (Roberts, 
2004) (see Figure 5), or other fashion, control tasks 
must satisfy the following characteristics in order for 
this application of decentralized control to work. 
 
1. Each task is not further decomposable. 
2. The computational complexities of all tasks are 

identical. 
3. Each task must complete a control cycle and 

cannot be scheduled until its sample of sensor 
signals is obtained. 

4. There is no data dependency among the 
computational tasks, so different tasks can be 
processed in different control cycles in an 
arbitrary order. 

 



 

The computational dependence between the 
subsystems is negligible. Thus the six panels of the 
primary mirror do not need to cooperate with each 
other to achieve precision shaping because local 
controllers perform the alignment against a 
calibrated parabolic reference. Note that for a 
processor to process any number of tasks (Figure 5), 
it must have access to the corresponding sample of 
sensor signals, the current state vectors, and a means 
of sending the actuator output signals to the DAC. 
Therefore the design of fault-tolerant data flow 
architectures is of utmost importance. 
 

 

 
Figure 5: From top to bottom, straightforward, pipelined, 

and group-pipelined task scheduling. 

5 DATA FLOW ARCHITECTURE 

In order to ensure continuous control of the 
telescope testbed, an efficient and reliable data flow 
architecture needs to be in place that gives each 
processor the full set of sensor data. 

5.1 Master-slave Data Flow System 

One conventional approach structures the flow of 
data in a master-slave configuration (Figure 6). In 
this method, only one processor, the master, handles 
all the data inputs and outputs. The master processor 
reads all data from the ADC first-in, first-out (FIFO) 
buffers and passes them to each of the slave 
processors. Once each processor finishes the control 
computations, the results are passed back and 
gathered by the master processor, which then 
proceeds to send the control commands to the plant. 

 

 
Figure 6: Master-slave data flow. 

 
This arrangement is simple and straightforward, 

but relies on a single processor. The system can be 
made to tolerate any slave processor failure, but in 
the event the master processor fails, then the entire 
computing system fails. 

5.2 Distributed Data Flow System 

The proposed distributed data flow architecture 
detailed here describes the development of a 
symmetric computer architecture where all 
processors operate identically. In this distributed 
data flow architecture (Figure 7), all processing 
nodes are capable of handling any input and output 
of data. In other words, each processor can read 
sensor signals from the ADC buffers independent of 
other processors, then perform its subset of the 
decentralized control calculations (this subset, i.e. 
task(s), is assigned based on the task mapping 
mechanism in use (Fallorina, 2004, Thienphrapa, 
2004, Roberts, 2004)). Upon completing its 
calculations, each processor can then independently 
send the results to the plant to command the 
appropriate actuators. 

5.3 Comparison 

This distributed scheme is more compatible with the 
concept of decentralized control and facilitates fault-
tolerance by removing the reliance of the system on 
any single processor. If one or more processors fail 
or recover from failure, the architecture is able to 
accommodate for these events and resume normal 
operations transparently. This is the distinguishing 
advantage of the distributed system over the master-
slave configuration. Failure of the master processor 
would lead to immediate failure of an entire master-
slave computing system. 

In light of this observation, what warrants 
discussion of the master-slave architecture is its 
widespread use in situations where failure is not a 
pressing concern (e.g. desktop computers), as well 
as its ease of implementation. Specifically, the 
distributed data flow architecture introduces 
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synchronization issues; processors must be 
synchronized within a control cycle in order for task 
scheduling to transpire correctly. Correctly 
implementing this mechanism with synchronization 
is nontrivial. Such matters can play a role in the 
development costs, development time, and reliability 
of the end product. 
 

 
Figure 7: Distributed data flow. 

5.4 Limitations 

Although several works in high performance, fault-
tolerant computing were considered, they were 
discounted due to the fixed, specialized nature of the 
SPACE testbed. 

For instance, hardware and software redundancy 

described in the literature (Reinhardt, 2000, Khan 

2001) are not feasible due to rigid power constraints. 

Other approaches assume workstation environments 

(Baratloo, 1995, DasGupta, 1999) that do not exhibit 

real-time performance. Due to hardware limitations, 

reconfigurable circuits (Blanton, 1998) and 

proactive fault detection (Siewiorek, 2004) cannot 

be used. Fortunately, the control process is 

straightforward and does not require sophisticated 

task mapping (Choudhary, 1994). 

6 DATA FLOW DESIGN 

In applying the distributed data flow architecture to 
the SPACE testbed computing system, various 
challenges arise due to its physically centralized data 
bus (Figure 8). Firstly, given the system architecture 
and hardware capabilities and limitations, the 
implementation of this design method requires more 
communication. Sensor data is located in 
destructive-read FIFO buffers on different ADC 
boards (Figure 8). Therefore, any data read by a 
processor is removed from the corresponding buffer 
space. If such data is required by the other 

processors, point-to-point communication between 
the processors will be necessary. Another 
practicality is that VMEbus accesses must be time-
shared amongst processors. In addition, task 
mapping becomes complicated when integrated with 
pipelined task scheduling techniques (Fallorina, 
2004, Thienphrapa, 2004, Roberts, 2004). 

To implement this distributed data flow 
architecture, each processor reads a subset of the 
total data and distributes the data amongst each 
other. This is achieved by configuring the ADC 
boards to send interrupt signals to assigned 
processors which read data from the interrupt 
source. Each time a processor takes data from the 
ADC FIFO buffers, it writes that data to shared 
memory where any other node can access it. This 
step is necessary because the full set of sensor 
samples is generally required to process control 
commands for any subsystem task. Future work will 
address the effects of using only a subset of these 
samples. In the end, all of the data is made equally 
available to any processor, producing the logical 
effect of distributed data flow. 
 

 
Figure 8: Distributed data flow on the SPACE testbed. 

 
The architecture of the system board and the 

VMEbus connection to the processors are not 
conducive to perfect fault tolerance. There are 
several bottlenecks in the architecture that do not 
have redundancies. However, an abstraction is 
created that allows for the design of fault tolerance 
that bypasses hardware limitations. Furthermore, an 
implementation will demonstrate proof-of-concept 



 

that the proposed solution does indeed support fault-
tolerant real-time decentralized control. 

Although fault detection is a rich area of interest 
in its own right, it is briefly discussed here as it 
pertains to the SPACE testbed. The shared memory, 
message passing, and interprocessor interrupt 
resources can be used to construct various fault-
tolerance mechanisms. Already considered ideas 
include using watchdog, neighbor, and ad hoc 
detection methods to indicate the state of processors. 

Reconfiguration for faults and recovery must be 
efficient in real-time systems. Pipelined task 
mapping performs this reconfiguration at the control 
task level by dynamically assigning tasks based on 
the working state of processors. At the data flow 
level, working processors can assume the data 
handling duties of failed processors in a state 
machine-like fashion. That is, the sensor and 
actuator channels that processors access will be 
determined by the quantity and identities of the 
processors that are failed. The mechanical attribute 
of such an approach will foster efficiency. 

7 SUMMARY & FUTURE WORK 

Costly and mission-critical systems must exhibit 
fault-tolerance in order to minimize loss due to 
failure. One facet of fault-tolerance provides for a 
grace period between fully functional and 
nonfunctional states during which steps can be taken 
to prepare for ultimate failure. More central to this 
project, however, is the uptime. It is desirable for a 
space telescope to smoothly continue operation 
despite the failure of processors on a multiprocessor 
platform, which is a single-event upset in nature and 
is a likely occurrence given the operating 
environment. With tolerance for processor failure 
enabled, a telescope can perform its scientific and 
logistical duties with minimal downtime. 

The distributed data flow architecture proposed 
here has been conceived for fault-tolerant, real-time 
decentralized control of a segmented reflector 
telescope testbed. In contrast with a master-slave 
configuration that has already been implemented, 
this approach does not rely on a single processor 
because the data input-output can be handled by any 
processor. This arrangement facilitates continuous 
system operation despite any processor failure. 
Future work includes completion of the distributed 
data flow architecture, detection and reconfiguration. 
Various fault detection and reconfiguration schemes 
will be tested and analyzed in addition to issues of 
sensor, actuator, and signal converter failure. 
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