

Efficient Real-time Parallel Signal Processing for Decentralized Control

Using Group-Pipelined Scheduling

J. Roberts, H. Boussalis, C. Liu, J. Dong, K. Rad, P. Thienphrapa, Z. Purnajo, and S. Fallorina

California State University, Los Angeles

Abstract

This paper presents a technology of generic

group-pipelined scheduling for decentralized control of

large flexible structures of a segmented reflector telescope,

the James Webb Space Telescope (JWST) testbed. Such a

structure is controlled by a number of lower-order

decentralized local controllers, leading to reduced

computational complexities, and ease of development of a

coarse-grain parallel control algorithm. The key

algorithmic technology presented in the paper is the task

scheduling of the parallel control algorithm; the

decentralized control tasks have to be mapped and

scheduled onto the processors to fully utilize the

computational power. The group-pipelined approach,

compared against a straightforward task scheduling

approach, can result in perfect load balancing and fault-

tolerance should one of multiple processors fail. This

approach can also significantly reduce the “ripple control

delay” of stabilization introduced by a previously used

basic pipelined approach.

1. Introduction

As the successor to the Hubble Space Telescope

(HST), the James Webb Space Telescope (JWST), formerly

known as Next Generation Space Telescope (NGST),

requires a larger light-gathering mirror capable of detecting

faint signals [1]. Due to the manufacturing and deployment

difficulties of using a monolithic piece of glass, the primary

mirror of the JWST will consist of several smaller

reflecting panels. However, a reflector built from segments

relies on an active control system for precision alignment of

the optical surface. This control system is responsible for

achieving high-precision figure control and maintenance of

the reflector surface to a calibrated parabolic reference

figure in a dynamic disturbance environment.

To study the control of such large segmented

optical systems, the National Aeronautics and Space

Administration (NASA) in 1994 provided funding to

establish the Structures Pointing and Control Engineering

(SPACE) Laboratory at the California State University, Los

Angeles (CSULA). One of the major goals of this project is

to design and fabricate a testbed that resembles the complex

dynamic behavior of a segmented space telescope.

The control of the SPACE testbed proceeds as

follows: Unknown external forces displace the mirror’s

segments into incorrect positions; in the JWST this event

would corrupt images received by the telescope. The

inductive sensors detect these displacements and convert

them into corresponding electrical signals. The analog-to-

digital converters then sample these voltages and digitize

such signals. Then, a decomposition technique is employed

that results in physical or mathematical decentralization of

the structure into lower-order subsystems [3]. The control

system processes the subsystems in a decentralized fashion

to produce appropriate control outputs. Such control

outputs, after being converted back into continuous

voltages are sent to the actuators in order to reposition the

displaced panels into a correct configuration. The control

system performs this control cycle iteratively to actively

maintain precise mirror shaping.

The decentralized control algorithm, by nature,

can be performed in parallel using multiple processors [12].

An embedded parallel architecture has been employed in

the SPACE Laboratory testbed. The real-time embedded

system, utilizes a Pentek 4285 board that is configured with

four TMS320C40 digital signal processors [9]. Each

processor has its own local memory in addition to a

globally shared memory space. High-speed bidirectional

communication ports allow direct message passing between

processors, while the shared global random access memory

(RAM) is accessed through a common bus. Here, the

processors are arranged in a tree topology with one

processor configured as the master since only it has access

to the digital-to-analog (D/A) and analog-to-digital (A/D)

converters. These signal converters, in turn, are connected

to the actuator amplifiers and sensors respectively. The

control of the primary mirror requires 18 sensor inputs and

18 actuator outputs; this multiple input-multiple output

(MIMO) system attests to the computational requirements

of this application.

In performing parallel processing we refer to the

control of a single subsystem as a control task, or simply

task. In each control cycle we wish to distribute the number

of tasks, M, among the number of available processors, P.

Based on the decentralized model we make the following

assumptions:

1. Each task is not further decomposed.

2. Computational complexities of all tasks are identical.

3. Each task completes a control cycle.

4. There are no data dependences among tasks [8].

Based on the features of the control algorithm and the

tailored embedded architecture, three task scheduling

schemes – straightforward, basic-pipelined, and group-

pipelined – are compared in the paper. Both our analytical

study and the preliminary experiments show that the basic-

pipelined approach can improve the utilization of the

processors, and thus, result in a higher throughput than the

straightforward one. On the other hand, the basic-pipelined

approach causes a delay of stabilization due to a fact of

“ripple control” of the decentralized system. Ripple control

is the effect of the properties of a pipeline on the control

output. This effect is that all of the control variables do not

update simultaneously using the basic-pipelined design.

Such a delay can be alleviated by using the group-pipelined

approach.

The rest of the paper is organized as follows. Section 2

describes the straightforward task scheduling. Section 3

describes the basic-pipelined approach. Section 4 describes

the group-pipelined approach, and justifies the use of such

an approach to alleviate the ripple control delay. Section 5

shows the experimental results and comparisons of the

three approaches. Section 6 concludes the paper.

2. Straightforward Task Scheduling

Based on the system decentralization [6], one

straightforward approach is to assign the tasks to the

processors as evenly as possible within the same control

cycle. If M is a perfect multiple of P, then perfect load

balancing is achieved by evenly distributing the tasks

among the processors. Otherwise, a subset of the processors

will be idle during certain control cycles due to the load

imbalance. Such a scenario is illustrated in Figure 1 with

M=6 and P=4. In this approach the length of the control

cycle must extend to the amount of time required by the

slowest processors, that is, the processors with the heaviest

loads. Optimal capacity is not achieved in this situation

because processors with lighter loads are idle while waiting

for processors with heavier loads to complete their tasks.

Another issue is that this mechanism does not lend

itself favorably towards fault tolerance because the failure

of one processor will result in the failure of its

corresponding subsystems, an unacceptable scenario.

P
1

Time

P
ro

c
e
s
s
o
r

P
2

P
3

P
4

1

2

3

4

5

6

Sample Period

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1. Straightforward scheduling (M=6 P=4)

3. Basic Pipelined Design

Capitalizing on the nature of decentralized control,

a more sophisticated parallel design approach has been

deployed to provide load balancing and fault tolerance.

Using this approach, each processor has the capability to

handle control calculations for an arbitrary subsystem. Each

individual task is scheduled in a pipelined fashion among

the available processors, so the sequential order of the

control cycles can be observed. This approach allows

perfect load balancing for any numbers of P and M.

Furthermore, this technique promises to tolerate failure of

one or more processors, since any one of the functioning

nodes is able to control any subsystem. The task

rescheduling methodology for fault-tolerance can be found

in [6]. In this design, each processor keeps a copy of all of

the constant matrices associated with the control loop in its

local memory for all M controllers. These constant matrices

account for the geometry of the structure. While large

values of M require more local memory for each processor,

this approach reduces the traffic on the common bus due to

the accesses of the shared memory space. On the other

hand, the sensor input data, state variables and the

calculated control output signals are communicated via

message passing.

Note that in this real-time embedded system, the

control signals of a specific decentralized controller are

used to trigger the actuators to move the corresponding

panel. Sensor readings of panel displacements are read and

represented by an input vector. The input vector is then

used for the operation of the next iteration of the control

output. Thus, there is an automatic serialization between the

accesses of the global vectors; no racing problem can occur.

Figure 2 illustrates the general parallel pipeline.

 One the of key problems of the basic-pipelined

approach observed is that if M is much larger than P, the

decentralized control will ripple the different components

of the panels, leading to a delay of stabilization [13]. Such

problem has been identified from our previous research. In

this paper, a group-pipelined-based approach is devised to

alleviate such a phenomenon as described in the next

section.

1 2 3 M-1 M 1

1 2 3 M-1

1 2 3 M-1

M

M

1

2

1 2 3 M-1

1 2

M

M

M

M

M-1

M-1

M-1

M-2

M-2M-3

...

... M-P+1

Time

P
ro

c
e
s
s
o
rs

1
2

3
4

5
P

..
.

Figure 2. Generalized pipelined processing

4. Group-Pipelined Task Scheduling

In the group-pipelined approach, the controller

tasks are grouped and scheduled in a pipelined fashion

among the available processors, and the sequential order of

its control cycles remains intact. This method allows for

improved load balancing for any combination of the

numbers of processors and tasks. Task scheduling and

rescheduling are used to handle the cases when one or more

processors fail. A similar technique can also be employed

to optimize the parallel processing of tasks when failed

processors are recovered.

In this paper, a group-pipelined scheduling is used

to alleviate the effect of ripple control delay. The M control

tasks are grouped into super-tasks with floor(M/P) control

tasks each. Then the super-tasks are scheduled in a

pipelined fashion among the available processors as before.

Using this approach, there are floor(M/P)*P tasks being

performed in every control cycle. Experimental results are

shown to compare the performance of the group-pipelined

approach against that of the straightforward and basic-

pipelined approaches.

Figure 3. Grouped-pipelined task scheduling

Using the group-pipelined approach, a better linearity of

throughput is observed as the number of processors

increases. Also, the delay of stabilization due to the rippled

control of the subsystems has been reduced since all tasks

are handled simultaneously in each control cycle.

Note that, this approach still retains the features of

the basic-pipelined scheme, that every processor performs

all control tasks. Thus, it is easy to perform task

rescheduling should a processor fail. On the other hand,

since M is not necessarily a perfect multiple of P, the load

balancing can be sacrificed. Figure 3 demonstrates group-

pipelined task scheduling with three processors.

5. Experimental results

The straightforward parallel implementation of

decentralized controllers has been realized successfully in

the SPACE testbed. These decentralized control algorithm

codes were written in C and implemented using up to four

DSPs running in parallel.

The speedup curves shown below in Figure 4

demonstrate the effectiveness of the parallel processing.

The processing time is reduced as the number of processors

is increased, thus allowing the attainment of real-time

control objectives. However, due to the coarse-grain nature

of the decentralized controller tasks, there is no difference

in speed for the cases P=3 and P=4 using the

straightforward approach.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Number of Processors

S
p

e
e
d

-u
p

Straightforward

Pipelined

Figure 4. Speedup curves

In the cases P=1 to 3, the straightforward approach yields

better speedup results than pipelining due to the overhead

incurred under pipelining, which is caused by message

passing and the increased repetition of data input and

output. However, the pipelined task scheduling technique

shows superiority in performance for the cases P=4 and 5

due to increased throughput. The results below show that

pipelined scheduling exhibits competitive performance in

comparison with the straightforward approach while

featuring fault tolerance. The following figures provide

means with which to compare the performance of the

pipelined implementation and the straightforward

implementation. Figure 5 describes the straightforward

implementation, while the figure 6 describes the pipelined

implementation. Figure 7 shows the grouped pipeline

results. It is the finding that the grouped method’s

performance is similar to that of the straightforward method

for one, two and three processors.

Figure 5. Straightforward implementation

Figure 6. Pipelined implementation

Figure 7. Grouped-pipelined task scheduling

The shape of the stabilization plot in the straightforward

case is the same for different numbers of processors

because all six subsystems are processed in every control

cycle. On the other hand, stabilization under pipelining

exhibits different ripple delays for different numbers of

processors. This is likely the result of different numbers of

subsystems being processed per control cycle, depending

on the number of processors present. Particularly in the

two-processor basic-pipelined scenario, the system appears

to stabilize slowly due to an underdamped response, as only

two subsystems are controlled per control cycle. Such

underdamped behavior is not shown in the group-pipelined

approach since all six subsystems can be controlled in each

cycle as discussed in Section 4.

6. Conclusion and Future Work

Parallel program design and realization has been

implemented successfully using decentralized control

algorithms. The implemented decentralized controllers have

the following features: achieve desired system performance,

allow the use of small memory space, reduce computational

complexity, and simplify the development of parallel

programs. Real-time control performance has been

achieved using a straightforward parallel program design.

However, such a standard approach suffers from poor load

balancing and is not resilient to processor failures. By

capitalizing on the natural parallel structure of decentralized

control, a fault-tolerant group-pipelined parallel processing

design has been developed. This approach features

improved load balancing for any number of processors and

tasks. Pipelined task scheduling seeks to improve the

performance in the cases when M is not an integer multiple

of P. Additionally the system allows recovery from one or

more processor failures. Also, such an approach alleviates

the delay of stabilization due to the ripple control problem

introduced by our previously employed basic pipelined

approach.

Future work will involve more special cases and

more complicated scenarios such as handling master

processor failure. Fault detection for single and multiple

processor failure, reconfiguration of tasks, analysis of time

data and optimization of message passing will also be

accomplished.

7. Acknowledgements

This work was supported by NASA under Grant

URC NCC 4158.NNG04GD69G. Special thanks go to all

the faculty and students associated with the SPACE Lab.

8. References

[1] H. Stockman, The Next Generation Space Telescope; Visiting

a Time When Galaxies Were Young. June 1997.

[2] H. Boussalis, "Decentralization of Large Space-borne

Telescopes", Proceedings of SPIE Symposium on

Astronomical Telescopes, 1994.

[3] H. Boussalis, M. Mirmirani, A. Chassiakos, and K. Rad,

“The Use of Decentralized Control in the Design of a Large

Segmented Space Reflector,” Control and Structures

Research Laboratory, California State University, Los

Angeles, Final Report, 1996.

[4] H. Boussalis, M. Mirmirani, K. Rad., M. Morales., E.

Velazquez, A.G Chassiakos, J.A Luzardo, "The Use of

Decentralized Control in the Design of a Large Segmented

Space Reflector," NASA URC Technical Conference,

Albuquerque, NM. February, 1997.

[5] D.D. Siljak, Decentralized Control of Complex Systems, New

York: Academic, 1991.

[6] S. Fallorina, H. Boussalis, C. Liu, K. Rad, J. Dong, A.

Khoshafian, P. Thienphrapa, and Dani Nasser, “A Generic

Pipelined Task Scheduling Algorithm for Fault-Tolerant

Decentralized Control of a Segmented Telescope Testbed,”

Proceedings of ASME DETC/CIE 2004, September –

October, 2004, Salt Lake City, Utah.

[7] I. Foster, Designing and Building Parallel Programs,

Addison-Wesley Publishing Company, Inc. 1995.

[8] J. Hennessy, D. Patterson, Computer Architecture, A

Quantitative Approach, Morgan Publishing, San Francisco, Calif.,

1990.

[9] TMS320C4x User’s Guide, Texas Instruments, Inc., 1991.

[10] Octal TMS320C40 Processor Manual, Pentek, 1998.

[11] J. Liu, Real-time Systems, Prentice-Hall, Inc. 2000.

[12] H. Boussalis, E.B. Kosmatopoulos, M. Mirmirani, P.A.

Ioannou, “Adaptive Control of Multivariable Nonlinear

System with Application to a Large Segmented Reflector”,

ACC 1998.

[13] P. Thienphrapa, S. Fallorina, H. Boussalis, C. Liu, K. Rad, J.

Dong, D. Nasser, “A Generalized Fault-Tolerant Pipelined

Task Scheduling for Decentralized Control of Large

Segmented Systems”, Proceedings of CCCT 2004, August

2004, Austin, Texas.

