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Abstract 
 

This paper presents a technology of generic 

group-pipelined scheduling for decentralized control of 

large flexible structures of a segmented reflector telescope, 

the James Webb Space Telescope (JWST) testbed. Such a 

structure is controlled by a number of lower-order 

decentralized local controllers, leading to reduced 

computational complexities, and ease of development of a 

coarse-grain parallel control algorithm. The key 

algorithmic technology presented in the paper is the task 

scheduling of the parallel control algorithm; the 

decentralized control tasks have to be mapped and 

scheduled onto the processors to fully utilize the 

computational power. The group-pipelined approach, 

compared against a straightforward task scheduling 

approach, can result in perfect load balancing and fault-

tolerance should one of multiple processors fail. This 

approach can also significantly reduce the “ripple control 

delay” of stabilization introduced by a previously used 

basic pipelined approach. 

 

1. Introduction 
 

As the successor to the Hubble Space Telescope 

(HST), the James Webb Space Telescope (JWST), formerly 

known as Next Generation Space Telescope (NGST), 

requires a larger light-gathering mirror capable of detecting 

faint signals [1]. Due to the manufacturing and deployment 

difficulties of using a monolithic piece of glass, the primary 

mirror of the JWST will consist of several smaller 

reflecting panels. However, a reflector built from segments 

relies on an active control system for precision alignment of 

the optical surface. This control system is responsible for 

achieving high-precision figure control and maintenance of 

the reflector surface to a calibrated parabolic reference 

figure in a dynamic disturbance environment. 

To study the control of such large segmented 

optical systems, the National Aeronautics and Space 

Administration (NASA) in 1994 provided funding to 

establish the Structures Pointing and Control Engineering 

(SPACE) Laboratory at the California State University, Los 

Angeles (CSULA). One of the major goals of this project is 

to design and fabricate a testbed that resembles the complex 

dynamic behavior of a segmented space telescope. 

The control of the SPACE testbed proceeds as 

follows: Unknown external forces displace the mirror’s 

segments into incorrect positions; in the JWST this event 

would corrupt images received by the telescope. The 

inductive sensors detect these displacements and convert 

them into corresponding electrical signals. The analog-to-

digital converters then sample these voltages and digitize 

such signals. Then, a decomposition technique is employed 

that results in physical or mathematical decentralization of 

the structure into lower-order subsystems [3]. The control 

system processes the subsystems in a decentralized fashion 

to produce appropriate control outputs. Such control 

outputs, after being converted back into continuous 

voltages are sent to the actuators in order to reposition the 

displaced panels into a correct configuration. The control 

system performs this control cycle iteratively to actively 

maintain precise mirror shaping. 

The decentralized control algorithm, by nature, 

can be performed in parallel using multiple processors [12]. 

An embedded parallel architecture has been employed in 

the SPACE Laboratory testbed. The real-time embedded 

system, utilizes a Pentek 4285 board that is configured with 

four TMS320C40 digital signal processors [9]. Each 

processor has its own local memory in addition to a 

globally shared memory space. High-speed bidirectional 

communication ports allow direct message passing between 

processors, while the shared global random access memory 

(RAM) is accessed through a common bus. Here, the 

processors are arranged in a tree topology with one 

processor configured as the master since only it has access 

to the digital-to-analog (D/A) and analog-to-digital (A/D) 

converters. These signal converters, in turn, are connected 

to the actuator amplifiers and sensors respectively. The 

control of the primary mirror requires 18 sensor inputs and 

18 actuator outputs; this multiple input-multiple output 

(MIMO) system attests to the computational requirements 

of this application. 

In performing parallel processing we refer to the 

control of a single subsystem as a control task, or simply 

task. In each control cycle we wish to distribute the number 

of tasks, M, among the number of available processors, P. 



 

 

Based on the decentralized model we make the following 

assumptions: 

 

1. Each task is not further decomposed. 

2. Computational complexities of all tasks are identical. 

3. Each task completes a control cycle. 

4. There are no data dependences among tasks [8]. 

 

Based on the features of the control algorithm and the 

tailored embedded architecture, three task scheduling 

schemes – straightforward, basic-pipelined, and group-

pipelined – are compared in the paper. Both our analytical 

study and the preliminary experiments show that the basic-

pipelined approach can improve the utilization of the 

processors, and thus, result in a higher throughput than the 

straightforward one. On the other hand, the basic-pipelined 

approach causes a delay of stabilization due to a fact of 

“ripple control” of the decentralized system. Ripple control 

is the effect of the properties of a pipeline on the control 

output. This effect is that all of the control variables do not 

update simultaneously using the basic-pipelined design. 

Such a delay can be alleviated by using the group-pipelined 

approach. 

 

The rest of the paper is organized as follows. Section 2 

describes the straightforward task scheduling. Section 3 

describes the basic-pipelined approach. Section 4 describes 

the group-pipelined approach, and justifies the use of such 

an approach to alleviate the ripple control delay. Section 5 

shows the experimental results and comparisons of the 

three approaches. Section 6 concludes the paper. 

 

2. Straightforward Task Scheduling 
 

Based on the system decentralization [6], one 

straightforward approach is to assign the tasks to the 

processors as evenly as possible within the same control 

cycle. If M is a perfect multiple of P, then perfect load 

balancing is achieved by evenly distributing the tasks 

among the processors. Otherwise, a subset of the processors 

will be idle during certain control cycles due to the load 

imbalance. Such a scenario is illustrated in Figure 1 with 

M=6 and P=4. In this approach the length of the control 

cycle must extend to the amount of time required by the 

slowest processors, that is, the processors with the heaviest 

loads. Optimal capacity is not achieved in this situation 

because processors with lighter loads are idle while waiting 

for processors with heavier loads to complete their tasks. 

Another issue is that this mechanism does not lend 

itself favorably towards fault tolerance because the failure 

of one processor will result in the failure of its 

corresponding subsystems, an unacceptable scenario. 
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Figure 1. Straightforward scheduling (M=6 P=4) 
 

3. Basic Pipelined Design 
 

Capitalizing on the nature of decentralized control, 

a more sophisticated parallel design approach has been 

deployed to provide load balancing and fault tolerance. 

Using this approach, each processor has the capability to 

handle control calculations for an arbitrary subsystem. Each 

individual task is scheduled in a pipelined fashion among 

the available processors, so the sequential order of the 

control cycles can be observed. This approach allows 

perfect load balancing for any numbers of P and M. 

Furthermore, this technique promises to tolerate failure of 

one or more processors, since any one of the functioning 

nodes is able to control any subsystem. The task 

rescheduling methodology for fault-tolerance can be found 

in [6]. In this design, each processor keeps a copy of all of 

the constant matrices associated with the control loop in its 

local memory for all M controllers. These constant matrices 

account for the geometry of the structure. While large 

values of M require more local memory for each processor, 

this approach reduces the traffic on the common bus due to 

the accesses of the shared memory space. On the other 

hand, the sensor input data, state variables and the 

calculated control output signals are communicated via 

message passing. 

Note that in this real-time embedded system, the 

control signals of a specific decentralized controller are 

used to trigger the actuators to move the corresponding 

panel. Sensor readings of panel displacements are read and 

represented by an input vector. The input vector is then 

used for the operation of the next iteration of the control 

output. Thus, there is an automatic serialization between the 

accesses of the global vectors; no racing problem can occur. 

Figure 2 illustrates the general parallel pipeline. 

 One the of key problems of the basic-pipelined 

approach observed is that if M is much larger than P, the 

decentralized control will ripple the different components 

of the panels, leading to a delay of stabilization [13]. Such 

problem has been identified from our previous research. In 

this paper, a group-pipelined-based approach is devised to 

alleviate such a phenomenon as described in the next 

section. 
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Figure 2. Generalized pipelined processing 
 

4. Group-Pipelined Task Scheduling 
 

In the group-pipelined approach, the controller 

tasks are grouped and scheduled in a pipelined fashion 

among the available processors, and the sequential order of 

its control cycles remains intact. This method allows for 

improved load balancing for any combination of the 

numbers of processors and tasks. Task scheduling and 

rescheduling are used to handle the cases when one or more 

processors fail. A similar technique can also be employed 

to optimize the parallel processing of tasks when failed 

processors are recovered. 

In this paper, a group-pipelined scheduling is used 

to alleviate the effect of ripple control delay. The M control 

tasks are grouped into super-tasks with floor(M/P) control 

tasks each. Then the super-tasks are scheduled in a 

pipelined fashion among the available processors as before. 

Using this approach, there are floor(M/P)*P tasks being 

performed in every control cycle. Experimental results are 

shown to compare the performance of the group-pipelined 

approach against that of the straightforward and basic-

pipelined approaches. 

 

 

Figure 3. Grouped-pipelined task scheduling 
 

Using the group-pipelined approach, a better linearity of 

throughput is observed as the number of processors 

increases. Also, the delay of stabilization due to the rippled 

control of the subsystems has been reduced since all tasks 

are handled simultaneously in each control cycle. 

Note that, this approach still retains the features of 

the basic-pipelined scheme, that every processor performs 

all control tasks. Thus, it is easy to perform task 

rescheduling should a processor fail. On the other hand, 

since M is not necessarily a perfect multiple of P, the load 

balancing can be sacrificed. Figure 3 demonstrates group-

pipelined task scheduling with three processors. 

 

5. Experimental results 
 

The straightforward parallel implementation of 

decentralized controllers has been realized successfully in 

the SPACE testbed. These decentralized control algorithm 

codes were written in C and implemented using up to four 

DSPs running in parallel. 

The speedup curves shown below in Figure 4 

demonstrate the effectiveness of the parallel processing. 

The processing time is reduced as the number of processors 

is increased, thus allowing the attainment of real-time 

control objectives. However, due to the coarse-grain nature 

of the decentralized controller tasks, there is no difference 

in speed for the cases P=3 and P=4 using the 

straightforward approach. 
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Figure 4. Speedup curves 
 

In the cases P=1 to 3, the straightforward approach yields 

better speedup results than pipelining due to the overhead 

incurred under pipelining, which is caused by message 

passing and the increased repetition of data input and 

output. However, the pipelined task scheduling technique 

shows superiority in performance for the cases P=4 and 5 

due to increased throughput. The results below show that 

pipelined scheduling exhibits competitive performance in 

comparison with the straightforward approach while 

featuring fault tolerance. The following figures provide 

means with which to compare the performance of the 

pipelined implementation and the straightforward 



 

 

implementation. Figure 5 describes the straightforward 

implementation, while the figure 6 describes the pipelined 

implementation. Figure 7 shows the grouped pipeline 

results. It is the finding that the grouped method’s 

performance is similar to that of the straightforward method 

for one, two and three processors. 

 

 

Figure 5. Straightforward implementation 
 

 

Figure 6. Pipelined implementation 
 

 

Figure 7. Grouped-pipelined task scheduling 

 

The shape of the stabilization plot in the straightforward 

case is the same for different numbers of processors 

because all six subsystems are processed in every control 

cycle. On the other hand, stabilization under pipelining 

exhibits different ripple delays for different numbers of 

processors. This is likely the result of different numbers of 

subsystems being processed per control cycle, depending 

on the number of processors present. Particularly in the 

two-processor basic-pipelined scenario, the system appears 

to stabilize slowly due to an underdamped response, as only 

two subsystems are controlled per control cycle. Such 

underdamped behavior is not shown in the group-pipelined 

approach since all six subsystems can be controlled in each 

cycle as discussed in Section 4. 

 

6. Conclusion and Future Work 
 

Parallel program design and realization has been 

implemented successfully using decentralized control 

algorithms. The implemented decentralized controllers have 

the following features: achieve desired system performance, 

allow the use of small memory space, reduce computational 

complexity, and simplify the development of parallel 

programs. Real-time control performance has been 

achieved using a straightforward parallel program design. 

However, such a standard approach suffers from poor load 

balancing and is not resilient to processor failures. By 

capitalizing on the natural parallel structure of decentralized 

control, a fault-tolerant group-pipelined parallel processing 

design has been developed. This approach features 

improved load balancing for any number of processors and 

tasks. Pipelined task scheduling seeks to improve the 

performance in the cases when M is not an integer multiple 

of P. Additionally the system allows recovery from one or 

more processor failures. Also, such an approach alleviates 

the delay of stabilization due to the ripple control problem 

introduced by our previously employed basic pipelined 

approach. 

Future work will involve more special cases and 

more complicated scenarios such as handling master 

processor failure. Fault detection for single and multiple 

processor failure, reconfiguration of tasks, analysis of time 

data and optimization of message passing will also be 

accomplished. 
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