
Centralized Processing and Distributed I/O for Robot

Control

Peter Kazanzides, Paul Thienphrapa

Department of Computer Science, Johns Hopkins University, Baltimore, MD

Abstract—Historically, the architecture of robot

controllers has been dictated by technology constraints.

When computers and networks were slow, it was necessary

to logically distribute the computation but to physically

centralize both the computation and I/O. This is

represented by a controller comprised of large rack of

embedded processors, with cables to all robot sensors and

actuators. As technology improved, it became feasible to

distribute both computation and I/O, as illustrated by

systems that use a field bus to connect a central controller

to low-level processors embedded near or within the robot.

This paper advocates a new architecture, centralized

processing and distributed I/O, that is enabled by current

computer and network technology. This architecture

provides benefits in academic environments because it

simplifies development of robot control software. The

feasibility of this approach is demonstrated by a custom

robot controller that uses IEEE 1394 (FireWire) to provide

direct communication between a central computer and non-

intelligent peripheral hardware devices.

1. INTRODUCTION

Robot systems are concurrent by nature: multiple joints

must be controlled simultaneously, and there is often a

hierarchy of control strategies. A typical robot controller

(Figure 1) contains “loops” for servo control, supervisory

(e.g., trajectory) control, and the application. In many cases,

the servo loop is distributed among multiple joint-level

microprocessors.

In the early days of robotics, controllers consisted of a

central computer with multiple joint-level control boards on

a parallel bus, such as ISA, Q-Bus, Multibus, or VME; this

was necessary for performance reasons alone. Although the

central computer usually contained multiple processors (e.g.,

joint-level control boards), this architecture can be

characterized as centralized processing and I/O.

With the emergence of high-speed serial networks, such as

CAN, Ethernet, USB, and IEEE 1394, it became possible to

physically distribute the joint controller boards and

associated power amplifiers. By placing these components

inside the robot arm, or at its base, significant reductions in

cabling could be achieved. In particular, the thick cables

containing multiple wires for motor power and sensor

feedback could be replaced by thin network and power

cables. These types of systems can be characterized as

distributed processing and I/O.

We advocate a new approach for robot control: centralized

processing and distributed I/O. This can be achieved by

replacing the microprocessors with programmable logic,

such as field-programmable gate arrays (FPGAs), that

provide direct, low-latency, interfaces between the high-

speed serial network and the I/O hardware. This preserves

the advantages of reduced cabling, while allowing all

software to be implemented on a high-performance

computer that contains a familiar software development

environment. We believe that this is especially important

for education and research environments because it frees

developers from having to learn the idiosyncrasies of the

various embedded microprocessors. We contend that this

approach is feasible due to recent advances in processor

performance, especially the move to multi-core architectures,

coupled with the extraordinarily high data rates of modern

serial networks. Another key factor is the availability of

low-cost real-time operating systems, such as those based on

Linux.

This paper will describe a robot controller that is based on

the principle of centralized processing and distributed I/O.

The next section reviews the design choices that led to the

selection of IEEE 1394 as the high-speed network, and

discusses other alternatives. This is followed by a summary

of the hardware prototype, which is a custom controller for

small DC motors used in a microsurgical snake robot.

Finally, we present some preliminary results obtained with

the hardware.

Supervisory/Trajectory

Control (~100 Hz)
Application

(non-real-time)

H
a
rd

w
a
re

Read Sensors

Compute Joint

Goals

Compute Goal

on Trajectory

Interpolate

Setpoint

Compute

Control

Read Sensors

Servo Control

(~1000 Hz)

Application

API

Supervisory/Trajectory

Control (~100 Hz)
Application

(non-real-time)

H
a
rd

w
a
re

Read Sensors

Compute Joint

Goals

Compute Goal

on Trajectory

Read Sensors

Compute Joint

Goals

Compute Goal

on Trajectory

Interpolate

Setpoint

Compute

Control

Read Sensors

Servo Control

(~1000 Hz)

Application

API

Figure 1 - Typical robot control architecture

2. CHOICE OF A HIGH SPEED NETWORK

The desire to perform real-time robot control, at frequencies

of 1-10 kHz, over a serial network leads to several key

requirements. First, we note that data packets are relatively

small. For example, closed-loop control of a robot joint can

be accomplished with as little as one feedback position (e.g.,

from a pot or encoder) and one control signal (e.g., voltage

or current to apply to the motor). A more generous setup

may contain a few feedback signals (e.g., position, velocity,

motor current, amplifier status) and a few control signals

(e.g., voltage and current limit). Even if 32-bit values are

used for many of these, a typical data packet (read or write)

would be on the order of 100 bytes. Thus, a six-joint robot

would require about 1200 bytes (6*200); at a control

frequency of 10 kHz, this would require a bus bandwidth of

12 Mbytes/sec, or approximately 100 Mbits/sec. This is not

difficult to achieve with modern high-speed serial networks,

such as IEEE 1394 (up to 400 or 800 Mbits/sec for 1394a or

1394b, respectively), USB 2.0 (up to 480 Mbits/sec) or

Ethernet (10, 100, or 1000 Mbits/sec).

A more critical performance metric is the latency of the data

transfers because it introduces a time delay in the control

computations, which compromises performance and can

lead to instability. Latency is primarily determined by

overhead in the protocol and the software drivers. Based on

our review of specifications and published reports, we

concluded that IEEE 1394 should provide the lowest latency,

especially when used with a real-time operating system.

The protocol supports real-time communication with

guaranteed 8 kHz (125 µs) bus cycles in isochronous mode,

with faster access rates possible in asynchronous mode. It is

an effective solution for real-time control, as shown in [1, 2],

and by its use in fly-by-wire systems [3].

Another important requirement is the ability to daisy-chain

nodes. For example, if a multi-axis robot contains

embedded I/O boards, daisy-chaining allows just a single

network cable to be connected to the robot – this cable

connects to the first I/O board, which then connects (daisy-

chains) to the second board, and so on. This allows a

significant cabling reduction compared to connecting a

separate network cable to each board (i.e., a star topology).

Physically, all of the considered serial networks (except the

outdated 10 Mbit Ethernet with coaxial cable) utilize point-

to-point links but provide daisy-chaining solutions. IEEE

1394 provides an especially attractive and inexpensive

solution by providing repeaters at the physical layer. In

contrast, USB requires a hub (with associated cost and

complexity) and Ethernet typically uses high-speed switches.

Although we selected IEEE 1394, we note that USB and

Ethernet have the advantage of market dominance. Also,

although we concluded that standard Ethernet was not ideal

for real-time control, we did not consider the many “real-

time” Ethernet variations that have been created. For

example, Powerlink employs a bus manager that schedules

200-µs cycles of isochronous and asynchronous phases [4],

a close resemblance to 1394. In EtherCAT, nodes forward

and append data packets as they are received with the aid of

dedicated hardware and software, resulting in the ability to

communicate with 100 axes in 100 µs [5]. EtherCAT is a

relative newcomer; [6] is an example showing its potential.

SERCOS approached a communication bottleneck in [7]

with increasing axes and cycle rates, but its recent

combination with Ethernet (SERCOS-III) has endowed it

with the ability to update 70 axes every 250 µs. Many of

these Ethernet variations also support daisy-chaining

without the use of switches.

IEEE 1394 has a potential drawback in the lack of high-

flexibility cables for installation within the moving structure

of a robot arm. In our application, this is not a serious

limitation because medical robots, compared to industrial

robots, move slowly and infrequently. Currently, the

Ethernet variations described above provide better cabling

options.

At the time of our initial evaluation (two years ago), we did

not consider PCI Express because it was limited to

backplanes and circuit boards. With the recent introduction

of a cable-based standard, PCI Express appears to be an

attractive alternative because it would not require protocol

conversion between the motherboard and peripheral devices.

3. HARDWARE PROTOTYPE

We constructed a hardware prototype to test the feasibility

of IEEE 1394a for centralized processing and distributed

I/O. We chose 1394a, rather than the faster 1394b, because

it provided ample bandwidth and the lower signal

frequencies simplified the hardware design. The basic

design of a node consists of an IEEE 1394a physical layer

(PHY) chip, an FPGA, and multiple power amplifier boards

(channels), as shown in Figure 2. Each power amplifier

board provides the hardware interface to a small DC motor.

It is a custom design that provides speed or torque control,

with precise measurement of the motor current. An earlier

version of the design is presented in [8], which described an

ISA bus board that contained four power amplifier channels.

The new amplifier board contains several improvements,

Figure 2 - Block diagram of a node

such as a bridge amplifier design (two power op amps

instead of one) and a programmable gain amplifier for the

motor current feedback, which is also used for hardware

speed control [8]. As depicted in Figure 3, the interface

between the FPGA and the power amplifier board includes a

Serial Peripheral Interface (SPI) to the digital-to-analog

converter (DAC), analog-to-digital converter (ADC), and

digital pot that implements the programmable gain amplifier.

The power amplifier also provides incremental encoder

feedback to the FPGA, with level translation to ensure that

the FPGA input voltage limit (3.3V) is satisfied. The FPGA

is responsible for the quadrature decode logic that converts

the incremental encoder feedback into position and velocity

measurements. Digital I/O lines (not shown) are used to

enable/disable the power amplifiers and to provide

status/fault feedback.

We used an FPGA development board (Altera UP3) for the

first prototype to reduce our development risk. Realistically,

we expected that our system would not work the first time

we connected a PC to the prototype node. The development

board eliminated the possibility that we did not properly

design or fabricate the FPGA portion of the prototype. Thus,

we could focus our debugging effort on the FPGA code and

on the custom daughterboard that contained the IEEE 1394a

PHY chip (Texas Instruments TSB41AB2).

Most of the functionality of each node is implemented as

firmware on the FPGA, which serves as a low-latency

interface between the power amplifier channels and the bus.

The FPGA receives packets from the 1394 bus, responds to

them, and communicates with the I/O devices. The

computer can access the channels through control and data

registers. The high-level FPGA operation is depicted in

Figure 4 and the following sections briefly describe the

methods for writing and reading node data. These sections

focus on the peripheral devices that contain SPI interfaces

because those are the most complex. The last section

describes the PC software.

Writing data to a node

The PC performs a write transaction over the IEEE 1394

bus to send the motor voltage or current limit to the DAC,

or to send the wiper setting to the digital pot. The FPGA

receives the write request, checks the CRC, generates an

acknowledgment packet (required by the IEEE 1394

protocol), and then decodes the packet to obtain the

destination address and data. The data is written to a

Motor

Programmable

Gain Amplifier

ADC

DAC

Filter

Differential

Amplifier

Power

Op-Amp

Power

Op-Amp

Level

Translation

FPGA

Pot

Enc

Sense

Resistor
Filter

Motor Voltage

Current Limit

Pot

Motor current

IEEE 1394

PHY

SPI

SPI

Motor

Programmable

Gain Amplifier

ADC

DAC

Filter

Differential

Amplifier

Power

Op-Amp

Power

Op-Amp

Level

Translation

FPGA

Pot

Enc

Sense

Resistor
Filter

Motor Voltage

Current Limit

Pot

Motor current

IEEE 1394

PHY

SPI

SPI

Figure 3 - Block diagram of I/O and power amplifier board with IEEE-1394 interface

Figure 4 - FPGA structure and operation

register which is then shifted out bit-by-bit to the

appropriate device (DAC or digital pot) via the SPI interface.

Reading data from a node

The PC performs a read transaction to obtain the motor

current or potentiometer feedback from the ADC, or to

obtain the digital pot wiper setting. Because the ADC has a

relatively long conversion time (about 0.7 µs per channel), it

is not advisable to start a new conversion and wait for the

result whenever a read request is received. Instead, the

FPGA continuously requests conversions and stores the

most recent results in registers. When the FPGA receives a

read request, it checks the CRC, generates an

acknowledgment, and then creates a reply packet from the

most recent conversion result. In general, it can be

challenging to properly synchronize access to the register

(i.e., so the FPGA does not attempt to retrieve the latest

conversion result while a new value is being stored). In our

implementation this is simplified because the FPGA clock is

obtained from the 49.152 MHz clock generated by the

1394a PHY chip. Thus, read requests are synchronous with

respect to FPGA processing and SPI transfers.

Because the SPI signals are shared between all devices

(DAC, ADC and digital pot), it is necessary to handle

reading of the digital pot a little differently. Specifically,

the PC must first send a write request to instruct the FPGA

to pause ADC conversions, read the digital pot into an

FPGA register, and then resume conversions. Next, the PC

sends a read request to obtain the stored value. This extra

complexity is not significant because reading of the digital

pot should be a relatively rare occurrence.

PC Software

The PC provides the environment for centralized

computation. For real-time systems, we typically use the

Real Time Application Interface (RTAI) for Linux. For the

initial experiments reported below, we used a conventional

Linux operating system. Our test software used the

libraw1394 library to communicate with nodes. All read

and write transactions were performed as quadlets (32 bits)

because the block transfers had not yet been implemented in

the FPGA firmware. In the future, when using a real-time

operating system it may be beneficial to consider alternative

software libraries and drivers, such as RT-FireWire [9], that

are designed for real-time performance.

4. PERFORMANCE MEASUREMENTS

We measured the performance of quadlet (32-bit) read and

write requests over the IEEE 1394a bus to our controller

node. As described above, the reads are implemented on the

FPGA such that there is no protocol delay (i.e. no busy

wait) on the FPGA between receiving a read request and

generating a response. Similarly, there is no delay between

the receipt of a write request and the start of the write.

Figure 5 shows the timing results of 9,000 iterations of

quadlet reads and writes. The tests were run at 400 Mbps

with one node connected to a 2 GHz Pentium 4 PC by a 6-

foot cable. The read times appear in three bands (30, 42, 49

µs) and the write times in two bands (27, 42 µs), probably

due to variability in the discrete transaction sequences (e.g.

request-ack-response for reads and request-ack for writes).

The average read and write times are 34.5 and 30.2 µs

respectively—each respective low band is most common.

We noted a few large outliers, perhaps due to our use of a

conventional operating system (Linux), rather than a real-

time operating system, for these tests. We will investigate

the regular distribution patterns as well as the outliers

should they arise under a real-time operating system.

Overall the times are well above theoretical maxima—e.g. a

quadlet read, 296 total bits, should take less than a

microsecond to complete at 400 Mbps. We believe that

software overhead is the primary cause (as in [10]), and

hope to reduce this in the future. Nevertheless, because

software overhead should be relatively independent of data

size, these results indicate that the most efficient approach is

to use one block read to obtain all feedback data (from all

joints serviced by the node) and one block write to send all

control signals. In a straightforward implementation (read-

control-write), a combined read/write time of about 65 µs

leaves a generous 935 µs for control computations at 1 kHz,

but only 60 µs at 8 kHz and 35 µs at 10 kHz. IEEE 1394

Figure 5 - IEEE-1394a quadlet read and write times at 400

Mbits/sec

also supports isochronous transfers, which occur at a

frequency of 8 kHz and may therefore be more efficient for

control at this frequency.

5. CONCLUSIONS AND FUTURE WORK

We presented the motivation for a new approach to robot

control, where the computation is centralized on a PC but

the I/O is distributed via a high-speed serial network. A key

element is the use of programmable logic, such as an FPGA,

to provide link layer services for the network by routing

read and write requests to the appropriate hardware device.

The concept was demonstrated by a custom robot controller

that uses IEEE 1394a (FireWire) for communication

between the control PC and the distributed I/O devices.

This controller is being developed to control a small snake

robot for laryngeal surgery.

Preliminary performance data, with a conventional

operating system (Linux), indicates that this approach is

feasible for control rates up to several kHz; higher rates,

such as 10 kHz, appear to be challenging with the current

setup based on the measured times for quadlet read and

write transactions. We are currently investigating whether

significantly better performance can be obtained with a real-

time operating system or by changes to the software drivers.

We evaluated the first prototype, which consisted of three

types of boards: a commercial FPGA development board, a

custom daughterboard with an IEEE 1394a PHY chip, and

custom motor power amplifiers. We are now constructing a

second prototype that combines the first two boards (FPGA

and PHY) into a single custom board.

We refrain from calling centralized processing and

distributed I/O a novel concept because it is likely that

others have adopted this approach, especially those using

one of the many enhanced “real time” Ethernet protocols.

We contend that this approach is especially advantageous in

areas such as research and education, where typical users

are not proficient with software development using

embedded microprocessors and their associated tools.

ACKNOWLEDGMENT

We thank Hamid Wasti of Regan Designs, Inc. (Coeur

d’Alene, Idaho) and Fran Wu for their extensive help with

the design and layout of the controller boards, and Mitch

Williams for his help with the software setup. This project

was supported by NSF EEC 9731748, NSF MRI 0722943,

and Johns Hopkins University internal funds.

REFERENCES

[1] Sarker, M., C. Kim, S. Baek, and B. You, “An IEEE-
1394 based real-time robot control system for efficient
controlling of humanoids,” IEEE Intelligent Robots and
Systems, Beijing, China, Oct 2006.

[2] Zhang, Y., B. Orlic, P. Visser, and J. Broenink, “Hard
real-time networking on FireWure,” Real-Time Linux
Workshop, Lille, France, Nov 2005.

[3] Baltazar, G. and G. Chapelle, “Firewire in modern
integrated military avionics,” IEEE Aerospace and
Electronic Systems Magazine, vol.16, no.11, pp.12-16,
Nov 2001.

[4] Ethernet Powerlink: http://ethernet-powerlink.org.

[5] EtherCAT Technology Group: http://www.ethercat.org.

[6] Robertz, S., K. Nilsson, R. Henriksson, and A.
Blomdell, “Industrial robot motion control with real-
time Java and EtherCAT," IEEE Emerging
Technologies & Factory Automation, pp. 1453-1456,
2007.

[7] Lin, S., C. Ho, and Y. Tzou, “Distributed motion
control using real-time network communication
techniques,” International Power Electronics and
Motion Control, vol. 2, pp. 843-847, Aug 2000.

[8] Kapoor, A., N. Simaan, and P. Kazanzides, “A system
for speed and torque control of DC motors with
application to small snake robots,” IEEE Mechatronics
and Robotics, Aachen, Germany, Sep 2004.

[9] Zhang, Y., B. Orlic, P. Visser, and J. Broenink, “Hard
real-time networking on FireWure,” Real-Time Linux
Workshop, Lille, France, Nov 2005.

[10] Sarker, M., C. Kim, J. Cho, B. You, "Development of a
network-based real-time robot control system over
IEEE 1394: using open source software platform,"
IEEE Mechatronics, pp. 563-568, July 2006.

