
Centralized Processing and Distributed I/O for Robot 

Control 

Peter Kazanzides, Paul Thienphrapa 

Department of Computer Science, Johns Hopkins University, Baltimore, MD 

 

 

Abstract—Historically, the architecture of robot 

controllers has been dictated by technology constraints.  

When computers and networks were slow, it was necessary 

to logically distribute the computation but to physically 

centralize both the computation and I/O.  This is 

represented by a controller comprised of large rack of 

embedded processors, with cables to all robot sensors and 

actuators.  As technology improved, it became feasible to 

distribute both computation and I/O, as illustrated by 

systems that use a field bus to connect a central controller 

to low-level processors embedded near or within the robot.  

This paper advocates a new architecture, centralized 

processing and distributed I/O, that is enabled by current 

computer and network technology.  This architecture 

provides benefits in academic environments because it 

simplifies development of robot control software.  The 

feasibility of this approach is demonstrated by a custom 

robot controller that uses IEEE 1394 (FireWire) to provide 

direct communication between a central computer and non-

intelligent peripheral hardware devices. 

1. INTRODUCTION 

Robot systems are concurrent by nature: multiple joints 

must be controlled simultaneously, and there is often a 

hierarchy of control strategies.  A typical robot controller 

(Figure 1) contains “loops” for servo control, supervisory 

(e.g., trajectory) control, and the application.  In many cases, 

the servo loop is distributed among multiple joint-level 

microprocessors. 

 

In the early days of robotics, controllers consisted of a 

central computer with multiple joint-level control boards on 

a parallel bus, such as ISA, Q-Bus, Multibus, or VME; this 

was necessary for performance reasons alone.  Although the 

central computer usually contained multiple processors (e.g., 

joint-level control boards), this architecture can be 

characterized as centralized processing and I/O. 

 

With the emergence of high-speed serial networks, such as 

CAN, Ethernet, USB, and IEEE 1394, it became possible to 

physically distribute the joint controller boards and 

associated power amplifiers.  By placing these components 

inside the robot arm, or at its base, significant reductions in 

cabling could be achieved.  In particular, the thick cables 

containing multiple wires for motor power and sensor 

feedback could be replaced by thin network and power 

cables.  These types of systems can be characterized as 

distributed processing and I/O. 

 

We advocate a new approach for robot control:  centralized 

processing and distributed I/O.  This can be achieved by 

replacing the microprocessors with programmable logic, 

such as field-programmable gate arrays (FPGAs), that 

provide direct, low-latency, interfaces between the high-

speed serial network and the I/O hardware.  This preserves 

the advantages of reduced cabling, while allowing all 

software to be implemented on a high-performance 

computer that contains a familiar software development 

environment.  We believe that this is especially important 

for education and research environments because it frees 

developers from having to learn the idiosyncrasies of the 

various embedded microprocessors.  We contend that this 

approach is feasible due to recent advances in processor 

performance, especially the move to multi-core architectures, 

coupled with the extraordinarily high data rates of modern 

serial networks.  Another key factor is the availability of 

low-cost real-time operating systems, such as those based on 

Linux. 

 

This paper will describe a robot controller that is based on 

the principle of centralized processing and distributed I/O.  

The next section reviews the design choices that led to the 

selection of IEEE 1394 as the high-speed network, and 

discusses other alternatives.  This is followed by a summary 

of the hardware prototype, which is a custom controller for 

small DC motors used in a microsurgical snake robot.  

Finally, we present some preliminary results obtained with 

the hardware.   

Supervisory/Trajectory 

Control (~100 Hz)
Application

(non-real-time)

H
a
rd

w
a
re

Read Sensors

Compute Joint 

Goals

Compute Goal 

on Trajectory

Interpolate 

Setpoint

Compute 

Control

Read Sensors

Servo Control

(~1000 Hz)

Application

API

Supervisory/Trajectory 

Control (~100 Hz)
Application

(non-real-time)

H
a
rd

w
a
re

Read Sensors

Compute Joint 

Goals

Compute Goal 

on Trajectory

Read Sensors

Compute Joint 

Goals

Compute Goal 

on Trajectory

Interpolate 

Setpoint

Compute 

Control

Read Sensors

Servo Control

(~1000 Hz)

Application

API

 

Figure 1 - Typical robot control architecture 

 



2. CHOICE OF A HIGH SPEED NETWORK 

The desire to perform real-time robot control, at frequencies 

of 1-10 kHz, over a serial network leads to several key 

requirements.  First, we note that data packets are relatively 

small.  For example, closed-loop control of a robot joint can 

be accomplished with as little as one feedback position (e.g., 

from a pot or encoder) and one control signal (e.g., voltage 

or current to apply to the motor).  A more generous setup 

may contain a few feedback signals (e.g., position, velocity, 

motor current, amplifier status) and a few control signals 

(e.g., voltage and current limit).  Even if 32-bit values are 

used for many of these, a typical data packet (read or write) 

would be on the order of 100 bytes.  Thus, a six-joint robot 

would require about 1200 bytes (6*200); at a control 

frequency of 10 kHz, this would require a bus bandwidth of 

12 Mbytes/sec, or approximately 100 Mbits/sec.  This is not 

difficult to achieve with modern high-speed serial networks, 

such as IEEE 1394 (up to 400 or 800 Mbits/sec for 1394a or 

1394b, respectively), USB 2.0 (up to 480 Mbits/sec) or 

Ethernet (10, 100, or 1000 Mbits/sec).  

 

A more critical performance metric is the latency of the data 

transfers because it introduces a time delay in the control 

computations, which compromises performance and can 

lead to instability. Latency is primarily determined by 

overhead in the protocol and the software drivers.  Based on 

our review of specifications and published reports, we 

concluded that IEEE 1394 should provide the lowest latency, 

especially when used with a real-time operating system.  

The protocol supports real-time communication with 

guaranteed 8 kHz (125 µs) bus cycles in isochronous mode, 

with faster access rates possible in asynchronous mode.  It is 

an effective solution for real-time control, as shown in [1, 2], 

and by its use in fly-by-wire systems [3]. 

 

Another important requirement is the ability to daisy-chain 

nodes.  For example, if a multi-axis robot contains 

embedded I/O boards, daisy-chaining allows just a single 

network cable to be connected to the robot – this cable 

connects to the first I/O board, which then connects (daisy-

chains) to the second board, and so on.  This allows a 

significant cabling reduction compared to connecting a 

separate network cable to each board (i.e., a star topology).  

Physically, all of the considered serial networks (except the 

outdated 10 Mbit Ethernet with coaxial cable) utilize point-

to-point links but provide daisy-chaining solutions.   IEEE 

1394 provides an especially attractive and inexpensive 

solution by providing repeaters at the physical layer.  In 

contrast, USB requires a hub (with associated cost and 

complexity) and Ethernet typically uses high-speed switches. 

 

Although we selected IEEE 1394, we note that USB and 

Ethernet have the advantage of market dominance.  Also, 

although we concluded that standard Ethernet was not ideal 

for real-time control, we did not consider the many “real-

time” Ethernet variations that have been created.  For 

example, Powerlink employs a bus manager that schedules 

200-µs cycles of isochronous and asynchronous phases [4], 

a close resemblance to 1394.  In EtherCAT, nodes forward 

and append data packets as they are received with the aid of 

dedicated hardware and software, resulting in the ability to 

communicate with 100 axes in 100 µs [5].  EtherCAT is a 

relative newcomer; [6] is an example showing its potential.  

SERCOS approached a communication bottleneck in [7] 

with increasing axes and cycle rates, but its recent 

combination with Ethernet (SERCOS-III) has endowed it 

with the ability to update 70 axes every 250 µs.  Many of 

these Ethernet variations also support daisy-chaining 

without the use of switches. 

 

IEEE 1394 has a potential drawback in the lack of high-

flexibility cables for installation within the moving structure 

of a robot arm.  In our application, this is not a serious 

limitation because medical robots, compared to industrial 

robots, move slowly and infrequently.  Currently, the 

Ethernet variations described above provide better cabling 

options. 

 

At the time of our initial evaluation (two years ago), we did 

not consider PCI Express because it was limited to 

backplanes and circuit boards.  With the recent introduction 

of a cable-based standard, PCI Express appears to be an 

attractive alternative because it would not require protocol 

conversion between the motherboard and peripheral devices. 

3. HARDWARE PROTOTYPE 

We constructed a hardware prototype to test the feasibility 

of IEEE 1394a for centralized processing and distributed 

I/O.  We chose 1394a, rather than the faster 1394b, because 

it provided ample bandwidth and the lower signal 

frequencies simplified the hardware design.  The basic 

design of a node consists of an IEEE 1394a physical layer 

(PHY) chip, an FPGA, and multiple power amplifier boards 

(channels), as shown in Figure 2.  Each power amplifier 

board provides the hardware interface to a small DC motor.  

It is a custom design that provides speed or torque control, 

with precise measurement of the motor current.  An earlier 

version of the design is presented in [8], which described an 

ISA bus board that contained four power amplifier channels.  

The new amplifier board contains several improvements, 
 

Figure 2 - Block diagram of a node 



such as a bridge amplifier design (two power op amps 

instead of one) and a programmable gain amplifier for the 

motor current feedback, which is also used for hardware 

speed control [8].  As depicted in Figure 3, the interface 

between the FPGA and the power amplifier board includes a 

Serial Peripheral Interface (SPI) to the digital-to-analog 

converter (DAC), analog-to-digital converter (ADC), and 

digital pot that implements the programmable gain amplifier. 

The power amplifier also provides incremental encoder 

feedback to the FPGA, with level translation to ensure that 

the FPGA input voltage limit (3.3V) is satisfied.  The FPGA 

is responsible for the quadrature decode logic that converts 

the incremental encoder feedback into position and velocity 

measurements.  Digital I/O lines (not shown) are used to 

enable/disable the power amplifiers and to provide 

status/fault feedback. 

 

We used an FPGA development board (Altera UP3) for the 

first prototype to reduce our development risk.  Realistically, 

we expected that our system would not work the first time 

we connected a PC to the prototype node.  The development 

board eliminated the possibility that we did not properly 

design or fabricate the FPGA portion of the prototype.  Thus, 

we could focus our debugging effort on the FPGA code and 

on the custom daughterboard that contained the IEEE 1394a 

PHY chip (Texas Instruments TSB41AB2). 

 

Most of the functionality of each node is implemented as 

firmware on the FPGA, which serves as a low-latency 

interface between the power amplifier channels and the bus.  

The FPGA receives packets from the 1394 bus, responds to 

them, and communicates with the I/O devices.  The 

computer can access the channels through control and data 

registers.  The high-level FPGA operation is depicted in 

Figure 4 and the following sections briefly describe the 

methods for writing and reading node data.  These sections 

focus on the peripheral devices that contain SPI interfaces 

because those are the most complex.  The last section 

describes the PC software. 

Writing data to a node 

The PC performs a write transaction over the IEEE 1394 

bus to send the motor voltage or current limit to the DAC, 

or to send the wiper setting to the digital pot.  The FPGA 

receives the write request, checks the CRC, generates an 

acknowledgment packet (required by the IEEE 1394 

protocol), and then decodes the packet to obtain the 

destination address and data.  The data is written to a 
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Figure 3 - Block diagram of I/O and power amplifier board with IEEE-1394 interface 

 

Figure 4 - FPGA structure and operation 

 



register which is then shifted out bit-by-bit to the 

appropriate device (DAC or digital pot) via the SPI interface.  

Reading data from a node 

The PC performs a read transaction to obtain the motor 

current or potentiometer feedback from the ADC, or to 

obtain the digital pot wiper setting.  Because the ADC has a 

relatively long conversion time (about 0.7 µs per channel), it 

is not advisable to start a new conversion and wait for the 

result whenever a read request is received.  Instead, the 

FPGA continuously requests conversions and stores the 

most recent results in registers.  When the FPGA receives a 

read request, it checks the CRC, generates an 

acknowledgment, and then creates a reply packet from the 

most recent conversion result.  In general, it can be 

challenging to properly synchronize access to the register 

(i.e., so the FPGA does not attempt to retrieve the latest 

conversion result while a new value is being stored).  In our 

implementation this is simplified because the FPGA clock is 

obtained from the 49.152 MHz clock generated by the 

1394a PHY chip.  Thus, read requests are synchronous with 

respect to FPGA processing and SPI transfers. 

 

Because the SPI signals are shared between all devices 

(DAC, ADC and digital pot), it is necessary to handle 

reading of the digital pot a little differently.  Specifically, 

the PC must first send a write request to instruct the FPGA 

to pause ADC conversions, read the digital pot into an 

FPGA register, and then resume conversions.  Next, the PC 

sends a read request to obtain the stored value.   This extra 

complexity is not significant because reading of the digital 

pot should be a relatively rare occurrence. 

PC Software 

The PC provides the environment for centralized 

computation.  For real-time systems, we typically use the 

Real Time Application Interface (RTAI) for Linux.  For the 

initial experiments reported below, we used a conventional 

Linux operating system.  Our test software used the 

libraw1394 library to communicate with nodes.  All read 

and write transactions were performed as quadlets (32 bits) 

because the block transfers had not yet been implemented in 

the FPGA firmware.  In the future, when using a real-time 

operating system it may be beneficial to consider alternative 

software libraries and drivers, such as RT-FireWire [9], that 

are designed for real-time performance. 

4. PERFORMANCE MEASUREMENTS 

We measured the performance of quadlet (32-bit) read and 

write requests over the IEEE 1394a bus to our controller 

node.  As described above, the reads are implemented on the 

FPGA such that there is no protocol delay (i.e. no busy 

wait) on the FPGA between receiving a read request and 

generating a response.  Similarly, there is no delay between 

the receipt of a write request and the start of the write. 

 

Figure 5 shows the timing results of 9,000 iterations of 

quadlet reads and writes.  The tests were run at 400 Mbps 

with one node connected to a 2 GHz Pentium 4 PC by a 6-

foot cable.  The read times appear in three bands (30, 42, 49 

µs) and the write times in two bands (27, 42 µs), probably 

due to variability in the discrete transaction sequences (e.g. 

request-ack-response for reads and request-ack for writes).  

The average read and write times are 34.5 and 30.2 µs 

respectively—each respective low band is most common.  

We noted a few large outliers, perhaps due to our use of a 

conventional operating system (Linux), rather than a real-

time operating system, for these tests.  We will investigate 

the regular distribution patterns as well as the outliers 

should they arise under a real-time operating system. 

 

Overall the times are well above theoretical maxima—e.g. a 

quadlet read, 296 total bits, should take less than a 

microsecond to complete at 400 Mbps.  We believe that 

software overhead is the primary cause (as in [10]), and 

hope to reduce this in the future.  Nevertheless, because 

software overhead should be relatively independent of data 

size, these results indicate that the most efficient approach is 

to use one block read to obtain all feedback data (from all 

joints serviced by the node) and one block write to send all 

control signals.  In a straightforward implementation (read-

control-write), a combined read/write time of about 65 µs 

leaves a generous 935 µs for control computations at 1 kHz, 

but only 60 µs at 8 kHz and 35 µs at 10 kHz.  IEEE 1394 

Figure 5 - IEEE-1394a quadlet read and write times at 400 

Mbits/sec 



also supports isochronous transfers, which occur at a 

frequency of 8 kHz and may therefore be more efficient for 

control at this frequency. 

5. CONCLUSIONS AND FUTURE WORK 

We presented the motivation for a new approach to robot 

control, where the computation is centralized on a PC but 

the I/O is distributed via a high-speed serial network.  A key 

element is the use of programmable logic, such as an FPGA, 

to provide link layer services for the network by routing 

read and write requests to the appropriate hardware device. 

 

The concept was demonstrated by a custom robot controller 

that uses IEEE 1394a (FireWire) for communication 

between the control PC and the distributed I/O devices.  

This controller is being developed to control a small snake 

robot for laryngeal surgery. 

 

Preliminary performance data, with a conventional 

operating system (Linux), indicates that this approach is 

feasible for control rates up to several kHz; higher rates, 

such as 10 kHz, appear to be challenging with the current 

setup based on the measured times for quadlet read and 

write transactions.  We are currently investigating whether 

significantly better performance can be obtained with a real-

time operating system or by changes to the software drivers. 

 

We evaluated the first prototype, which consisted of three 

types of boards:  a commercial FPGA development board, a 

custom daughterboard with an IEEE 1394a PHY chip, and 

custom motor power amplifiers.  We are now constructing a 

second prototype that combines the first two boards (FPGA 

and PHY) into a single custom board. 

 

We refrain from calling centralized processing and 

distributed I/O a novel concept because it is likely that 

others have adopted this approach, especially those using 

one of the many enhanced “real time” Ethernet protocols.  

We contend that this approach is especially advantageous in 

areas such as research and education, where typical users 

are not proficient with software development using 

embedded microprocessors and their associated tools. 
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