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Abstract—A robot can be seen as a set of actuated joints, each 

connected to a processing unit that senses feedback signals and 

generates actuation commands.  For robots with high locomotive 

sophistication, commonly seen in medical robotics, the requisite 

cabling and control processing can become unwieldy.  Motivated 

by dexterous snake-like robots for minimally invasive surgery, 

this paper explores the use of IEEE 1394 (FireWire), attached 

directly to low-latency field-programmable gate arrays 

(FPGAs), to distribute I/O and centralize processing.  This 

increases the viability of complex medical robots by reducing 

cabling and consolidating processing, thereby making systems 

more agile, reliable, and scalable. 

I. INTRODUCTION 

Minimally invasive surgery (MIS) is often a direct benefit 
for patients due to reduction of trauma, leading to fewer 
complications and shorter hospital stays.  MIS poses a number 
of challenges for surgeons, including constrained workspaces, 
limited field of view, and lack of dexterity at the distal end.  
These challenges remain despite the availability of manual 
MIS-specific instruments, which are rigid and difficult to 
handle through narrow insertion tubes. 

A. Snake Robot 

A unique design targeted for MIS of the upper airways, the 
Snake Robot [1] addresses these issues by introducing small, 
dexterous snake-like units (SLUs) that can be teleoperated.  
To avoid obscuring the work area, these SLUs are affixed to a 
1-m narrow shaft containing its wires and appear at the distal 
end of a laryngoscope; the shaft can also be adjusted under 
remote control (see Fig. 1). 

The Snake Robot is an eight degree-of-freedom (dof) 
manipulator.  Multiple Snakes may be used for surgical tasks 
such as suturing and suction.  The distal end of each 
manipulator consists of two SLUs connected in series; each 
SLU is constructed using four super-elastic NiTi tubes.  The 
anatomy of an SLU is shown in Fig. 2.  The center tube, which 
is the primary backbone, is connected to all of the discs, 
including the base disc, end disc, and intervening spacer discs.  
Surrounding the primary backbone at equally-spaced distances 

are the three other tubes, the secondary backbones.  These are 
fixed to only the end disc and are free to glide through holes in 
the intermediate spacer discs.  Two dof result from pushing 
and pulling the secondary backbones using three actuators 
located at the proximal end.  The push-pull actuation modes 
help prevent the backbones from buckling while satisfying 
structural statics [2].  The second SLU is appended to the end 
of the first SLU.  The backbones of this second SLU actually 
pass through the three hollow secondary backbones of the first 
SLU.  Attached to the end of the second SLU is a gripper that 
is actuated via a wire passed through the hollow central 
backbone.  This mechanical composition allows for a high 
payload capacity with a small size [3].  The existing prototype 
is 4 mm in diameter. 

 

Figure 1.  Snake Robot prototype [3] 
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Figure 2.  Anatomy of a snake-like unit [2] 

The aforementioned actuators (seven in total) are encased 
atop the shaft in a compact cylindrical unit; the shaft-cylinder 
assembly can be controlled with four additional dof.  A Z-Θ 
stage allows for rotation and translation about and along the 
shaft respectively.  A passive universal joint mounted on a five 
bar mechanism supports the shaft and provides XY mobility.  
This stage also stabilizes the robot against lateral deflections. 

B. Control Hardware for Robots of High Dimensionality 

Each Snake is actuated by 11 dc motors, accounting for 
two three-axis SLUs, a gripper, a two-axis Z-Θ stage, and a 
two-axis five bar mechanism.  In the prototype, two seven-
axis daVinci masters are used to command two Snake slaves 
for bimanual control. 

The low-level controller for the Snake Robot must be 
scalable to handle at least 36 axes (i.e. two 11-axis Snakes and 
two seven-axis masters), and possibly more in the future.  A 
significant reduction in dimensionality and hardware 
complexity was achieved via the push-pull actuation of 
flexible wires combined with derived kinematics [1], as 
opposed to actuation of several precision joints.  Nevertheless, 
the number of control axes for the Snake Robot remains 
considerable, as does its associated cabling.  One can envision 
the increases in both as robots are devised for more 
sophisticated surgical tasks.  By distributing I/O over an IEEE 
1394a (henceforth without the ‘a’) bus to nodes with low-
latency field-programmable gate arrays (FPGAs), and by 
centralizing processing, the control system hardware proposed 
here aims to mitigate the potential problems in robot mobility 
and reliability that arise with increasing structural complexity. 

II. LOW-LEVEL CONTROL SYSTEM 

Fig. 3 provides an overview of the low-level controller, 
with I/O distributed away from the computer.  Each node 
contains multiple channels, corresponding to the axes handled 
by the node.  Nodes can be added by daisy-chaining them on 
a single 1394 bus or by connecting them to the computer via 
an additional 1394 bus.  The bus is attached to a real-time 
computer that reads feedback signals from the channels, 
generates actuation commands, and writes them to their 
respective channels. 

A. Nodes 

A node, detailed in Fig. 4, contains circuitry that allows it 
to access I/O channels and handle 1394 packets.  IEEE 1394 
allows up to 63 nodes per bus.  Multi-bus configurations can 

be used for yet larger numbers of axes or for heterogeneous 
control environments. 

B. Channels 

A channel, or axis, contains the I/O components (e.g., 
DAC, ADC, quadrature encoder counter) and power 
amplification required to control one dc motor.  The channel 
under development (in Fig. 4) also includes a digital pot that 
allows software configuration for different motors and a 
digital switch to select between speed and torque control.  This 
makes this node-channel set applicable to other robots. 

The number of channels per node depends on the physical 
distribution of joints, limited by the memory and I/O capacity 
of the resident FPGA. 

C. Field-Programmable Gate Array 

Most of the functionality of each node is implemented as 
firmware on the FPGA, which serves as a low-latency 
interface between the channel I/Os and the bus.  The FPGA 
receives packets from the 1394 bus, responds to them, and 
communicates with the I/O devices.  The computer can access 
the channels through control and data registers.  Fig. 5 depicts 
the FPGA operation. 

D. Other Components 

The Texas Instruments TSB41AB2 is an IEEE 1394 
physical layer IC that can handle standard bus speeds up to 
400 Mbps.  It generates the 49.152 MHz clock signal used to 
synchronize data and clock the FPGA. 

For noise isolation, and to facilitate emergency shutdowns, 
the motor and digital voltages are drawn from separate 
regulated supplies.  Power from the 1394 bus is not used for 
these reasons, as well as to simplify the development effort. 

 

Figure 3.  Conceptual overview of the low-level controller 

 

Figure 4.  Block diagram of a node 



 
Figure 5.  FPGA structure and operation 

Linux on a conventional workstation (with a 1394 port) is 
being used for development purposes, with the intent of 
migrating to a real-time version of Linux (e.g. RTAI) to run 
the control software and robot applications.  Programs use the 
libraw1394 library to communicate with nodes; RT-FireWire 
[12] is being considered as an alternative. 

III. ADVANTAGES 

The advantages of using IEEE 1394 versus traditional 
parallel buses are multifold.  IEEE 1394 can multiplex data 
from many channels, reducing the cabling complexity as the 
number of channels grows.  This leads to improvements in 
hardware reliability, mobility, packaging, and scalability. 

Parallel buses limit the number of I/O channels that can be 
connected to one computer.  For example, an industrial-grade 
computer can reliably accommodate four ISA cards, and the 
number of channels per card is constrained to a modest 
number by physical size.  As a result, a single robot may need 
multiple computers to run.  In contrast, 1394 allows a large 
number of channels to be handled by a single computer.  Low-
latency inter-task communication can be used instead of 
network communication.  Because the processing can be done 
on one computer, the architecture is better suited to harness 
the power of high performance computing.  The integration 
allows for a familiar software development environment, and 
it alleviates the need for one to learn the idiosyncrasies of 
various embedded microprocessors, allowing researchers and 
developers to focus on higher level tasks. 

The generality of the channels and the need for many such 
boards on a dexterous robot help drive down the per-axis cost.  
The design encourages modularity, making the assembly 
compact and the boards conveniently swappable. 

IV. ALTERNATIVES TO IEEE 1394 

IEEE 1394 was selected because the protocol supports 
real-time communication with guaranteed 8 kHz (125 µs) bus 
cycles in isochronous mode, with faster access rates possible 
in asynchronous mode, and because it allows for daisy-
chaining of nodes.  It is an effective solution for real-time 
control, as shown in [6, 12], and by its use in fly-by-wire 
systems [7], but it is not necessarily the single best choice. 

The works of [6] and [12] focus on real-time control 
bandwidth, but not the physical benefits of distributed I/O and 
centralized processing emphasized here.  The differences 
manifest in their use of PCI cards and onboard computers, 
contrasting with our use of compact custom electronics. 

Fair bus access is incorporated into IEEE 1394 hardware; 
bus arbitration in Ethernet is nondeterministic, but kilohertz-
range motor control is achievable on isolated networks with 
software modifications [14, 15].  Several Ethernet variations 
have been developed that make the medium very promising.  
Powerlink (ethernet-powerlink.org) employs a bus manager 
that schedules 200-µs cycles of isochronous and asynchronous 
phases.  In EtherCAT (ethercat.org), nodes forward and 
append data packets as they are received with the aid of 
dedicated hardware and software, resulting in the ability to 
communicate with 100 axes in 100 µs.  EtherCAT is a relative 
newcomer; [8] is an example showing its potential.  SERCOS 
approached a communication bottleneck in [9] with increasing 
axes and cycle rates, but its recent combination with Ethernet 
(SERCOS-III) has endowed it with the ability to update 70 
axes every 250 µs.  Similarly, the Controller Area Network 
(CAN, can-cia.org) bus is well-suited for real-time control, but 
its bandwidth is limited to 1 Mbps. 

CompactPCI is an industrial backplane interface capable 
of 132 MB/s throughputs, used notably in space systems by 
NASA in transitioning from VMEbus [10].  PCI Express is a 
new serial interface designed to replace computer expansion 
buses; a cable-based standard was not fully established at the 
time of the designs presented in this paper.  PCI Express 
supports real-time applications such as the industrial control 
example in [11]. 

High data rates are readily available with USB, but its 
reliance on the host processor for bus level tasks compromises 
its scalability in real-time control.  Conversely, IEEE 1394 
self-manages the bus at the physical layer. 

V. TIMING RESULTS 

As part of a control loop, the computer reads the ADCs 
and encoder feedbacks and writes the DACs.  The reads are 
implemented on the FPGA such that there is no protocol delay 
(i.e. no busy wait) on the FPGA between receiving a read 
request and generating a response.  Similarly, there is no delay 
between the receipt of a write request and the start of the 
write.  The I/O device access times are negligible (~2.5 µs, 
deterministic) relative to the system bandwidth.  Contention is 
not expected on the bus because the computer is implemented 
as the bus master and the nodes as slaves. 

A read transaction entails a request from the computer, an 
acknowledgment from the node, and a data response from the 



node.  A write transaction is the same, save for the response.  
Fig. 6 shows the timing results of 9,000 iterations of quadlet 
reads and writes.  The tests were run at 400 Mbps with one 
node connected to a 2 GHz Pentium 4 PC by a 6’ cable. 

The read times appear in three bands (30, 42, 49 µs) and 
the write times in two (27, 42 µs), possibly due to variability 
in discrete transaction sequences (e.g. request-ack-response); 
the average read and write times are 34.5 and 30.2 µs 
respectively—each respective low band is most common.  We 
will investigate the regular distribution patterns as well as 
outliers should they arise under a real-time operating system. 

High-valued outliers are sporadic and are likely artifacts of 
scheduling or memory accesses.  Overall the times are well 
above theoretical maxima—e.g. a quadlet read, 296 total bits, 
should only take a fraction of a microsecond to complete at 
400 Mbps.  Operating system overheads dominate (as in [13]) 
but should not increase appreciably with data size. 

VI. CONCLUSIONS AND FUTURE WORK 

Though parallel buses such as ISA, Q-Bus, Multibus, and 
VME have become tried-and-true interfaces for robot control, 
they are increasingly deprecated with the emergence of IEEE 
1394, PCI Express, and Ethernet-based protocols, which 
feature greatly simplified cabling.  These high-speed serial 
networks provide higher performance than traditional field 
buses, such as CAN, SERCOS, and RS-485, which have also 
been used for real-time control. 

This paper proposes a promising controller design based 
on IEEE 1394 for communication between the computer and 
the actuated joints.  The results confirm the desired real-time 
performance.  The advantages of distributing I/O to less 
obtrusive sites are discussed, particularly for medical robots. 

The IEEE 1394 bus helps reduce wiring complexity, 
making systems more robust.  The consolidation of processing 
tasks eases intra-robot communication (e.g. master-slave) and 
allows systems to utilize ever-advancing computing power. 

The design encourages modular, general electronics.  With 
the need for many controllers in agile medical robots, this 
factor helps reduce the average cost.  Modularity makes the 
boards easier to package, debug, and replace. 

 
Figure 6.  Quadlet read and write times over 9,000 iterations 

Block transfers are being integrated into node firmware to 
amortize software overhead.  The maximum packet size at 400 
Mbps, 2048 bytes, can carry data for hundreds of channels.  
Isochronous packets could be used to send real-time feedback 
data without the overhead of asynchronous read requests. 

The low-level control architecture presented here can pave 
the way for medical robots of greater agility, allowing more 
robot-assisted surgical tasks to be conceived.  For the Snake 
Robot, an additional arm can be more conveniently integrated 
and used for tasks such as camera placement or tissue 
manipulation.  New applications being considered include 
dexterous ultrasound imaging and ablation.  The software 
interface will be compatible with a standard medical robotics 
framework, the Surgical Assistant Workstation [5]. 
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