
A Distributed I/O Low-Level Controller for Highly-

Dexterous Snake Robots

Paul Thienphrapa, Peter Kazanzides

Department of Computer Science

Johns Hopkins University

Baltimore, MD, USA

Abstract—A robot can be seen as a set of actuated joints, each

connected to a processing unit that senses feedback signals and

generates actuation commands. For robots with high locomotive

sophistication, commonly seen in medical robotics, the requisite

cabling and control processing can become unwieldy. Motivated

by dexterous snake-like robots for minimally invasive surgery,

this paper explores the use of IEEE 1394 (FireWire), attached

directly to low-latency field-programmable gate arrays

(FPGAs), to distribute I/O and centralize processing. This

increases the viability of complex medical robots by reducing

cabling and consolidating processing, thereby making systems

more agile, reliable, and scalable.

I. INTRODUCTION

Minimally invasive surgery (MIS) is often a direct benefit
for patients due to reduction of trauma, leading to fewer
complications and shorter hospital stays. MIS poses a number
of challenges for surgeons, including constrained workspaces,
limited field of view, and lack of dexterity at the distal end.
These challenges remain despite the availability of manual
MIS-specific instruments, which are rigid and difficult to
handle through narrow insertion tubes.

A. Snake Robot

A unique design targeted for MIS of the upper airways, the
Snake Robot [1] addresses these issues by introducing small,
dexterous snake-like units (SLUs) that can be teleoperated.
To avoid obscuring the work area, these SLUs are affixed to a
1-m narrow shaft containing its wires and appear at the distal
end of a laryngoscope; the shaft can also be adjusted under
remote control (see Fig. 1).

The Snake Robot is an eight degree-of-freedom (dof)
manipulator. Multiple Snakes may be used for surgical tasks
such as suturing and suction. The distal end of each
manipulator consists of two SLUs connected in series; each
SLU is constructed using four super-elastic NiTi tubes. The
anatomy of an SLU is shown in Fig. 2. The center tube, which
is the primary backbone, is connected to all of the discs,
including the base disc, end disc, and intervening spacer discs.
Surrounding the primary backbone at equally-spaced distances

are the three other tubes, the secondary backbones. These are
fixed to only the end disc and are free to glide through holes in
the intermediate spacer discs. Two dof result from pushing
and pulling the secondary backbones using three actuators
located at the proximal end. The push-pull actuation modes
help prevent the backbones from buckling while satisfying
structural statics [2]. The second SLU is appended to the end
of the first SLU. The backbones of this second SLU actually
pass through the three hollow secondary backbones of the first
SLU. Attached to the end of the second SLU is a gripper that
is actuated via a wire passed through the hollow central
backbone. This mechanical composition allows for a high
payload capacity with a small size [3]. The existing prototype
is 4 mm in diameter.

Figure 1. Snake Robot prototype [3]

This work was funded by the National Science Foundation (NSF)
Engineering Research Center grant #EEC9731748, NSF grant #IIS9801684,

NSF grant MRI 0722943, and by Johns Hopkins University internal funds.

Figure 2. Anatomy of a snake-like unit [2]

The aforementioned actuators (seven in total) are encased
atop the shaft in a compact cylindrical unit; the shaft-cylinder
assembly can be controlled with four additional dof. A Z-Θ
stage allows for rotation and translation about and along the
shaft respectively. A passive universal joint mounted on a five
bar mechanism supports the shaft and provides XY mobility.
This stage also stabilizes the robot against lateral deflections.

B. Control Hardware for Robots of High Dimensionality

Each Snake is actuated by 11 dc motors, accounting for
two three-axis SLUs, a gripper, a two-axis Z-Θ stage, and a
two-axis five bar mechanism. In the prototype, two seven-
axis daVinci masters are used to command two Snake slaves
for bimanual control.

The low-level controller for the Snake Robot must be
scalable to handle at least 36 axes (i.e. two 11-axis Snakes and
two seven-axis masters), and possibly more in the future. A
significant reduction in dimensionality and hardware
complexity was achieved via the push-pull actuation of
flexible wires combined with derived kinematics [1], as
opposed to actuation of several precision joints. Nevertheless,
the number of control axes for the Snake Robot remains
considerable, as does its associated cabling. One can envision
the increases in both as robots are devised for more
sophisticated surgical tasks. By distributing I/O over an IEEE
1394a (henceforth without the ‘a’) bus to nodes with low-
latency field-programmable gate arrays (FPGAs), and by
centralizing processing, the control system hardware proposed
here aims to mitigate the potential problems in robot mobility
and reliability that arise with increasing structural complexity.

II. LOW-LEVEL CONTROL SYSTEM

Fig. 3 provides an overview of the low-level controller,
with I/O distributed away from the computer. Each node
contains multiple channels, corresponding to the axes handled
by the node. Nodes can be added by daisy-chaining them on
a single 1394 bus or by connecting them to the computer via
an additional 1394 bus. The bus is attached to a real-time
computer that reads feedback signals from the channels,
generates actuation commands, and writes them to their
respective channels.

A. Nodes

A node, detailed in Fig. 4, contains circuitry that allows it
to access I/O channels and handle 1394 packets. IEEE 1394
allows up to 63 nodes per bus. Multi-bus configurations can

be used for yet larger numbers of axes or for heterogeneous
control environments.

B. Channels

A channel, or axis, contains the I/O components (e.g.,
DAC, ADC, quadrature encoder counter) and power
amplification required to control one dc motor. The channel
under development (in Fig. 4) also includes a digital pot that
allows software configuration for different motors and a
digital switch to select between speed and torque control. This
makes this node-channel set applicable to other robots.

The number of channels per node depends on the physical
distribution of joints, limited by the memory and I/O capacity
of the resident FPGA.

C. Field-Programmable Gate Array

Most of the functionality of each node is implemented as
firmware on the FPGA, which serves as a low-latency
interface between the channel I/Os and the bus. The FPGA
receives packets from the 1394 bus, responds to them, and
communicates with the I/O devices. The computer can access
the channels through control and data registers. Fig. 5 depicts
the FPGA operation.

D. Other Components

The Texas Instruments TSB41AB2 is an IEEE 1394
physical layer IC that can handle standard bus speeds up to
400 Mbps. It generates the 49.152 MHz clock signal used to
synchronize data and clock the FPGA.

For noise isolation, and to facilitate emergency shutdowns,
the motor and digital voltages are drawn from separate
regulated supplies. Power from the 1394 bus is not used for
these reasons, as well as to simplify the development effort.

Figure 3. Conceptual overview of the low-level controller

Figure 4. Block diagram of a node

Figure 5. FPGA structure and operation

Linux on a conventional workstation (with a 1394 port) is
being used for development purposes, with the intent of
migrating to a real-time version of Linux (e.g. RTAI) to run
the control software and robot applications. Programs use the
libraw1394 library to communicate with nodes; RT-FireWire
[12] is being considered as an alternative.

III. ADVANTAGES

The advantages of using IEEE 1394 versus traditional
parallel buses are multifold. IEEE 1394 can multiplex data
from many channels, reducing the cabling complexity as the
number of channels grows. This leads to improvements in
hardware reliability, mobility, packaging, and scalability.

Parallel buses limit the number of I/O channels that can be
connected to one computer. For example, an industrial-grade
computer can reliably accommodate four ISA cards, and the
number of channels per card is constrained to a modest
number by physical size. As a result, a single robot may need
multiple computers to run. In contrast, 1394 allows a large
number of channels to be handled by a single computer. Low-
latency inter-task communication can be used instead of
network communication. Because the processing can be done
on one computer, the architecture is better suited to harness
the power of high performance computing. The integration
allows for a familiar software development environment, and
it alleviates the need for one to learn the idiosyncrasies of
various embedded microprocessors, allowing researchers and
developers to focus on higher level tasks.

The generality of the channels and the need for many such
boards on a dexterous robot help drive down the per-axis cost.
The design encourages modularity, making the assembly
compact and the boards conveniently swappable.

IV. ALTERNATIVES TO IEEE 1394

IEEE 1394 was selected because the protocol supports
real-time communication with guaranteed 8 kHz (125 µs) bus
cycles in isochronous mode, with faster access rates possible
in asynchronous mode, and because it allows for daisy-
chaining of nodes. It is an effective solution for real-time
control, as shown in [6, 12], and by its use in fly-by-wire
systems [7], but it is not necessarily the single best choice.

The works of [6] and [12] focus on real-time control
bandwidth, but not the physical benefits of distributed I/O and
centralized processing emphasized here. The differences
manifest in their use of PCI cards and onboard computers,
contrasting with our use of compact custom electronics.

Fair bus access is incorporated into IEEE 1394 hardware;
bus arbitration in Ethernet is nondeterministic, but kilohertz-
range motor control is achievable on isolated networks with
software modifications [14, 15]. Several Ethernet variations
have been developed that make the medium very promising.
Powerlink (ethernet-powerlink.org) employs a bus manager
that schedules 200-µs cycles of isochronous and asynchronous
phases. In EtherCAT (ethercat.org), nodes forward and
append data packets as they are received with the aid of
dedicated hardware and software, resulting in the ability to
communicate with 100 axes in 100 µs. EtherCAT is a relative
newcomer; [8] is an example showing its potential. SERCOS
approached a communication bottleneck in [9] with increasing
axes and cycle rates, but its recent combination with Ethernet
(SERCOS-III) has endowed it with the ability to update 70
axes every 250 µs. Similarly, the Controller Area Network
(CAN, can-cia.org) bus is well-suited for real-time control, but
its bandwidth is limited to 1 Mbps.

CompactPCI is an industrial backplane interface capable
of 132 MB/s throughputs, used notably in space systems by
NASA in transitioning from VMEbus [10]. PCI Express is a
new serial interface designed to replace computer expansion
buses; a cable-based standard was not fully established at the
time of the designs presented in this paper. PCI Express
supports real-time applications such as the industrial control
example in [11].

High data rates are readily available with USB, but its
reliance on the host processor for bus level tasks compromises
its scalability in real-time control. Conversely, IEEE 1394
self-manages the bus at the physical layer.

V. TIMING RESULTS

As part of a control loop, the computer reads the ADCs
and encoder feedbacks and writes the DACs. The reads are
implemented on the FPGA such that there is no protocol delay
(i.e. no busy wait) on the FPGA between receiving a read
request and generating a response. Similarly, there is no delay
between the receipt of a write request and the start of the
write. The I/O device access times are negligible (~2.5 µs,
deterministic) relative to the system bandwidth. Contention is
not expected on the bus because the computer is implemented
as the bus master and the nodes as slaves.

A read transaction entails a request from the computer, an
acknowledgment from the node, and a data response from the

node. A write transaction is the same, save for the response.
Fig. 6 shows the timing results of 9,000 iterations of quadlet
reads and writes. The tests were run at 400 Mbps with one
node connected to a 2 GHz Pentium 4 PC by a 6’ cable.

The read times appear in three bands (30, 42, 49 µs) and
the write times in two (27, 42 µs), possibly due to variability
in discrete transaction sequences (e.g. request-ack-response);
the average read and write times are 34.5 and 30.2 µs
respectively—each respective low band is most common. We
will investigate the regular distribution patterns as well as
outliers should they arise under a real-time operating system.

High-valued outliers are sporadic and are likely artifacts of
scheduling or memory accesses. Overall the times are well
above theoretical maxima—e.g. a quadlet read, 296 total bits,
should only take a fraction of a microsecond to complete at
400 Mbps. Operating system overheads dominate (as in [13])
but should not increase appreciably with data size.

VI. CONCLUSIONS AND FUTURE WORK

Though parallel buses such as ISA, Q-Bus, Multibus, and
VME have become tried-and-true interfaces for robot control,
they are increasingly deprecated with the emergence of IEEE
1394, PCI Express, and Ethernet-based protocols, which
feature greatly simplified cabling. These high-speed serial
networks provide higher performance than traditional field
buses, such as CAN, SERCOS, and RS-485, which have also
been used for real-time control.

This paper proposes a promising controller design based
on IEEE 1394 for communication between the computer and
the actuated joints. The results confirm the desired real-time
performance. The advantages of distributing I/O to less
obtrusive sites are discussed, particularly for medical robots.

The IEEE 1394 bus helps reduce wiring complexity,
making systems more robust. The consolidation of processing
tasks eases intra-robot communication (e.g. master-slave) and
allows systems to utilize ever-advancing computing power.

The design encourages modular, general electronics. With
the need for many controllers in agile medical robots, this
factor helps reduce the average cost. Modularity makes the
boards easier to package, debug, and replace.

Figure 6. Quadlet read and write times over 9,000 iterations

Block transfers are being integrated into node firmware to
amortize software overhead. The maximum packet size at 400
Mbps, 2048 bytes, can carry data for hundreds of channels.
Isochronous packets could be used to send real-time feedback
data without the overhead of asynchronous read requests.

The low-level control architecture presented here can pave
the way for medical robots of greater agility, allowing more
robot-assisted surgical tasks to be conceived. For the Snake
Robot, an additional arm can be more conveniently integrated
and used for tasks such as camera placement or tissue
manipulation. New applications being considered include
dexterous ultrasound imaging and ablation. The software
interface will be compatible with a standard medical robotics
framework, the Surgical Assistant Workstation [5].

ACKNOWLEDGMENT

We thank Hamid Wasti of Regan Designs, Inc. (Coeur
d’Alene, Idaho) and Fran Wu for their extensive help with the
design and layout of the controller boards, and Mitch Williams
for his help with software setup.

REFERENCES

[1] Simaan, N., R. Taylor, and P. Flint, “A dexterous system for laryngeal
surgery,” IEEE Robotics & Automation, vol. 1, pp. 351-357, Apr 2004.

[2] Kapoor, A., N. Simaan, and P. Kazanzides, “A system for speed and
torque control of DC motors with application to small snake robots,”
IEEE Mechatronics and Robotics, Aachen, Germany, Sep 2004.

[3] Kapoor, A., “Motion constrained control of robots for dexterous
surgical tasks,” Ph.D. dissertation, Johns Hopkins Univ., Sep 2007.

[4] Simaan, N., R. Taylor, and P. Flint, “High dexterity snake-like robotic
slaves for minimally invasive telesurgery of the upper airway,”
MICCAI, Rennes-Saint-Malo, France, Sep 2004.

[5] Vagvolgyi, B., S. DiMaio, A. Deguet, P. Kazanzides, R. Kumar, C.
Hasser, R. Taylor, “The Surgical Assistant Workstation,” MICCAI
Workshop on Systems and Arch. for Computer Assisted Interventions
(online at http://hdl.handle.net/10380/1466), Sep 2008.

[6] Sarker, M., C. Kim, S. Baek, and B. You, “An IEEE-1394 based real-
time robot control system for efficient controlling of humanoids,” IEEE
Intelligent Robots and Systems, Beijing, China, Oct 2006.

[7] Baltazar, G. and G. Chapelle, “Firewire in modern integrated military
avionics,” IEEE Aerospace and Electronic Systems Magazine, vol. 16,
no. 11, pp.12-16, Nov 2001.

[8] Robertz, S., K. Nilsson, R. Henriksson, and A. Blomdell, “Industrial
robot motion control with real-time Java and EtherCAT," IEEE
Emerging Technologies & Factory Automation, pp. 1453-1456, 2007.

[9] Lin, S., C. Ho, and Y. Tzou, “Distributed motion control using real-
time network communication techniques,” International Power
Electronics and Motion Control, vol. 2, pp. 843-847, Aug 2000.

[10] Walls, B., M. McClelland, S. Persyn, and D. Werner, “Leveraging
flight heritage to new CompactPCI space systems: a fusion of
architectures,” Digital Avionics Systems, vol. 2, pp. 8C41-8C47, 2001.

[11] Szydlowski, C., “Implementing PCI Express for industrial control,”
RTC Magazine, vol. 13, Sep 2004.

[12] Zhang, Y., B. Orlic, P. Visser, and J. Broenink, “Hard real-time
networking on FireWire,” RT Linux Workshop, Lille, FR, Nov 2005.

[13] Sarker, M., C. Kim, J. Cho, B. You, “Development of a network-based
real-time robot control system over IEEE 1394: using open source
software platform,” IEEE Mechatronics, pp. 563-568, July 2006.

[14] Schneider, S., “Making Ethernet work in real time,” Sensors Magazine,
vol. 17, no. 11, Nov 2000.

[15] Kerkes, J., “Real-time Ethernet,” Embedded Systems Design, vol. 14,
no. 1, Jan 2001.

