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Abstract— Research in surgical robots often calls for multi-
axis controllers and other I/O hardware for interfacing various
devices with computers. As the need for dexterity is increased,
the hardware and software interfaces required to support
additional joints can become cumbersome and impractical. To
facilitate prototyping of robots and experimentation with large
numbers of axes, it would be beneficial to have controllers that
scale well in this regard.

This paper discusses the design of a real-time (one kilohertz)
robot controller based on a centralized processing, distributed
I/O architecture. We combine powerful yet accessible real-time
technologies such as IEEE 1394 (FireWire) and low-latency field
programmable gate arrays (FPGAs). The device is developed
and used with a real-time operating system, and scalability
is demonstrated on a novel snake-like surgical manipulator.
Results on a 21-axis prototype suggest that the proposed
solution can help increase the viability of complex robots,
particularly in education and research. In that spirit, the robot
control software libraries have been released as open source,
and efforts are underway to release the electronic designs.

I. INTRODUCTION
A. Background

Minimally invasive surgery (MIS) is often beneficial for
patients due to reduction of trauma, leading to fewer com-
plications and shorter hospital stays. However, MIS poses
a number of challenges for surgeons, including constrained
workspaces, limited field of view, and lack of dexterity at the
distal end. These challenges remain despite the availability
of manual MIS-specific instruments, in part because these
instruments are rigid, difficult to manipulate through narrow
insertion tubes, and lack adequate suturing and tissue recon-
struction capabilities. In such situations, the efficacy of a
surgical robot is strongly tied to its dexterity.

Research on the Snake Robot [1] seeks to improve MIS
of the throat and upper airways by providing surgeons with
highly dexterous robotically-controlled tools. This dexterity
is achieved by incorporating more degrees of freedom (dof).
More sophisticated surgical tasks can be accomplished by
increasing dof, but the corresponding hardware increase
imposes a practical limit on the exploration of these ideas.
Similarly, research on different types of multi-axis surgical
robots is often mired in the hardware construction effort.
In response to these difficulties, this paper presents the
development of a system that is well suited for real-time
control of robots with many axes of control.
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Fig. 1. Under centralized I/O, conversions are performed on boards attached
to the local computer bus, resulting in a complex cabling scenario.

B. Motivations and Objectives

The efforts presented here and in [2], [3], [4] originate in
part from the need to improve upon the old multi-axis con-
troller [5] of the Snake Robot and replicate the controller for
other research projects. The unique requirements of the robot
necessitated a custom solution [5]. The original controller
utilizes a centralized I/O arrangement, whereby command
and feedback signals are transmitted in raw analog form over
long cables running between the robot and the computer. The
I/0 devices reside on custom circuit boards, which in turn are
directly attached to the computer via the ISA bus. Though the
design is conceptually straightforward, the wiring associated
with it introduces complications such as noise, cable drag,
reduced reliability, and greater construction effort. The debug
space is vast as there are many candidates for connectivity
problems. These issues are captured in Fig. 1.

Prompted by these motivations, we have developed a real-
time control system that takes advantage of a high-speed
serial bus, IEEE 1394, and capitalizes on the processing
power of contemporary computers. The benefits of using
this architecture are multifold. The centralized processing of
computational tasks eases software development efforts, and
a standard API is developed to exploit this benefit. A high
speed serial link is capable of multiplexing a large number
of I/O data streams between the computer and low-latency
field-programmable gate arrays (FPGAs); this distribution of
I/O replaces long, dense bundles of analog cables with a
single communication channel, thereby mitigating common



sources of failure associated with signal integrity and cable
complexity. We selected IEEE 1394 among other viable
candidates because it suited our purposes well [3].

This work is ultimately intended to provide an abstract
interface and scalable mechanisms for highly configurable,
fine-grain, real-time controllers, in order to simplify the
development of dexterous surgical robots from both hardware
and software perspectives. In an effort to disseminate these
benefits, we are making the electronic designs publicly avail-
able once mature, while the robot control libraries [6] have
already been released as open source software. Particularly
for education and research environments, this would enable
the exploration of complex surgical systems and technologies
by allowing for more dexterity, reliability, and scalability.

II. RELATED WORK

Though based on IEEE 1394, the works of [7] and [8]
focus on real-time control bandwidth and not on the physical
benefits of distributed I/O and centralized processing. The
differences manifest in their use of IEEE 1394 as a link to
an onboard computer, contrasting with our use of compact
custom electronics. Our work is most similar to that of [9],
where custom FPGA-based I/O boards communicate with
the computer over IEEE 1394. The bandwidth was sufficient
for at least six (possibly 12) dof to be updated at 1 kHz,
with unit delay latency. On the other hand, the current
study emphasizes scalability, performance, and the physical
benefits of the architecture. Ref [10] notes that using IEEE
1394 for high bandwidth PET scan data acquisition is viable
due to the availability of powerful commodity computers.
We agree in principle, though our respective applications are
fundamentally different.

A. Ethernet-Based Alternatives to IEEE 1394

Fair bus access is incorporated into IEEE 1394 hardware;
bus arbitration in Ethernet is nondeterministic, but kilohertz-
range motor control is achievable on isolated networks with
software modifications [11], [12]. Several Ethernet variations
have been developed that make the medium very promising.
Powerlink [13] employs a bus manager that schedules 200-
Us cycles of isochronous and asynchronous phases. SER-
COS approached a communication bottleneck in [14] with
increasing axes and cycle rates, but its recent combination
with Ethernet (SERCOS-III) has endowed it with the ability
to update 70 axes every 250 us.

A relative newcomer, EtherCAT [15] is an attractive pro-
tocol in which the nodes forward and append packets on-
the-fly using dedicated hardware and software, resulting in
the ability to communicate with 100 axes in 100 us; [16] is
an example showing its potential.

B. Other Alternatives to IEEE 1394

Many of the themes highlighted in this paper, including
distributed I/O, centralized computing, scalability, and form
factor, echo those of [17], which documents the MIRO
surgical robot developed by the German Aerospace Center
(DLR). Scalability in the MIRO robot is aided by the use

of SpaceWire, a 1 GB/s full duplex serial link with latency
less than 20 us. Whereas SpaceWire has been developed by
major international space agencies for space-borne systems,
we prefer IEEE 1394 as it is a more accessible protocol
for research, and its performance is more than adequate
for satisfying our requirements. We are particularly more
interested in the software-induced latency and overcoming
this latency to enhance scalability.

PCI Express is a fairly new serial interface designed to
replace computer expansion buses; a cable-based standard
was not fully established at the time of the designs presented
in this paper. PCI Express supports real-time applications
such as the industrial control example in [18]. High data
rates are readily available with USB, but its reliance on the
host processor for bus level tasks compromises its scalability
in real-time control. Conversely, IEEE 1394 self-manages
the bus at the physical layer. The Controller Area Network
(CAN) [19] bus is well-suited for real-time control and
has been widely used, but its bandwidth is limited to 1
Mbps. Though not a serial bus, CompactPCI is an industrial
backplane interface capable of 132 MB/s throughput, used
notably by NASA in transitioning from VMEbus [20].

III. CENTRALIZED PROCESSING, DISTRIBUTED 1/O

Robot systems are concurrent by nature: multiple joints
must be controlled simultaneously, and there is often a
hierarchy of control strategies. A typical robot controller con-
tains “loops” for servo control, supervisory (e.g., trajectory)
control, and the application.

In the early days of robotics, controllers consisted of a
central computer with a rack of joint-level control boards
on a parallel bus, such as ISA, Q-Bus, Multibus, or VME;
this was necessary for performance reasons, as computers
and networks were slow. Although the joint-level boards
usually contained embedded processors, this architecture can
be characterized as centralized processing and I/O. This
approach does not extend well as the number of control axes
increases because the requisite cabling can become unwieldy.

With the emergence of high-speed serial networks, such
as CAN, Ethernet, USB, and IEEE 1394, it became possible
to physically distribute the joint controller boards and asso-
ciated power amplifiers. By placing these components inside
the robot arm, or at its base, significant reductions in cabling
could be achieved. Thick cables containing multiple wires for
motor power and sensor feedback could be replaced by thin
network and power cables. These types of systems can be
characterized as distributed processing and I/O.

Given the recent advances in processor performance, espe-
cially the move to multi-core architectures, coupled with the
extraordinarily high data rates of modern serial networks, we
advocate a different approach for robot control: centralized
processing and distributed I/O (Fig. 2). This can be achieved
by replacing the microprocessors with FPGAs that provide
direct, low-latency interfaces between the high-speed serial
network and the I/O hardware. As mentioned, this preserves
the advantages of reduced cabling while allowing all software
to be implemented on a single high performance computer
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Fig. 2. Centralized processing, distributed I/O architecture.
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the actuator sites, linked to the computer via an IEEE 1394 bus.

with a familiar software development environment. This
frees developers from having to learn the idiosyncrasies of
various embedded microprocessors. Another key factor is the
availability of low-cost real-time operating systems, such as
those based on Linux.

IV. SYSTEM DESCRIPTION

Fig. 3 provides an overview of the control system. Each
node on the IEEE 1394 bus contains multiple axes of control.
Nodes can be daisy-chained or directly connected to the com-
puter. The bus is attached to a real-time computer that reads
feedback signals from the robot and generates corresponding
actuation commands for each axis. The controller is shown
in Fig. 4 installed on the Snake Robot.

A. Electronics Design

1) Amplifier Section: The amplifier section, which we
refer to as an axis or I/O channel depending on context,
contains the power amplification and I/O required to control

Snake (other end of stem)
Controller
Digital Section

Amplifier Section |

Actuation Unit

| Stem (extends beyond photo edge) ‘

Fig. 4. Completed controller mounted on the robot actuation unit.
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Fig. 5.

one dc motor. I/O signals include a motor enable line as
well as an op amp fault line to indicate overheating. Other
components include an analog-to-digital converter (ADC),
a digital-to-analog converter (DAC), and a digital poten-
tiometer. The dual-channel ADC digitizes analog feedback,
namely the potentiometer voltage and motor current. The
DAC provides motor speed and current limit commands. The
board passes incremental encoder pulses to the FPGA in the
digital section; these are decoded by the FPGA to compute
relative displacement and velocity.

The motor current feedback gain can be programmed
through the digital potentiometer and the operation mode
(speed or torque control) can be set via a digital output.
This flexibility allows for adaptation of the board to robots
with different low-power motors.

2) Digital Section: The digital section, which we often
refer to as a node following IEEE 1394 parlance, contains
circuitry for accessing the I/O channels and handling bus
transactions. Its core components are an FPGA and a two-
port IEEE 1394a physical layer chip.

IEEE 1394 allows up to 63 nodes per bus. The maximum
number of channels one node can accommodate is governed
largely by its resident FPGA. The low-cost Altera Cyclone
II EP2C8Q208C7N is comfortably able to control a Snake
Robot, though we have subsequently moved toward more
powerful, moderately priced devices.

3) Firmware Section: Most of the functionality of each
node is implemented as firmware on the FPGA. The state
machine in Fig. 5 describes the top level operation. Action
is initiated when the computer requests a data transac-
tion, for instance a sensor read or an actuator write. The
FPGA on the addressed node responds immediately with



an acknowledgment, per the IEEE 1394 protocol. For read
requests, the FPGA then fetches data from a continuously
refreshed buffer and sends them to the computer with a
timestamp. For write requests, it loads the appropriate buffers
and triggers the I/O devices. These concatenated read and
unified write transactions execute atomically and work well
for real-time control. This is in contrast to the delayed and
split transactions also supported by the protocol.

I/O operations for all channels, such as encoder count-
ing and Serial Peripheral Interface communication (for the
ADCs, DACs, and digital pots), run in parallel and are
accessed by the higher level part of the firmware that also
manages bus transactions.

B. Application Programming Interface

We developed an application programming interface (API)
for the control system described above. The interface has the
three-layer hierarchy shown in Fig. 6. The top layer consists
of abstract I/O operations that can be used for different
robots. It includes commands to latch all sensors and to apply
all outputs (e.g., for double-buffered DACs). Read and write
operations access one axis at a time, so only primitive C data
types (e.g., int, long) are needed.

The next layer down implements the abstract interface for
a particular robot. We previously measured the bus speed
[4] and found it to be plentiful for many axes of control,
but software-induced latency is a key concern, as in [21]. To
overcome this latency (about 35 us per transaction [2], [3]),
the middle API layer for the Snake Robot is customized
to bundle data for all axes of a node into a single bus
transaction. This layer provides access to individual axes
via local buffers that are filled by LatchAllSensors
and emptied by ApplyAllOutputs. So that a fixed block
size can be used to simplify the FPGA implementation, this
layer maintains a valid bit for each axis that tells the FPGA
whether or not to write the corresponding axis. The bottom
layer contains function calls to the IEEE 1394 API library
(libraw1394); RT-FireWire [8] is an alternative of interest.

To aid software development using this API, it is being
integrated into the cisst libraries [22], [6]. These libraries
contain resources that ease the development of robotic sys-
tems, which typically consist of concurrent and interacting
devices, processes, and data streams (as mentioned in Section
IIT). Software for the Snake Robot is based on these libraries.

C. Use Case: The Snake Robot

A unique design targeted for MIS of the upper airways, the
Snake Robot features a teleoperated dexterous end effector
that appears at the distal end of a narrow (4 mm), meter-long
stem through which the actuation wires run; the actuation
unit (AU) is located at the proximal end of the stem.

The end effector, or snake-like unit (SLU, Fig. 7), is
constructed using four superelastic NiTi backbones. The
central primary backbone is surrounded by three parallel
secondary backbones at equally-spaced radial distances and
angles. All four backbones are fixed to the distal end disc,
while only the primary backbone is fixed to the proximal
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bool ApplyAllOutputs();
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Fig. 6. Robot control API methods and hierarchy.
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Fig. 7. Anatomy of a snake-like unit (left) and photo (right) [5].

base disc. The secondary backbones are free to glide through
holes in the intermediate spacer discs.

When straight, the primary backbone is aligned with the
robot z-axis. The angle of bend from the z-axis is described
by 6, and the direction of bend (i.e. the angle about the z-
axis) is described by 6. These two degrees of freedom are
controlled by pushing and pulling the secondary backbones.

In the Snake Robot, two 4.2 mm diameter SLUs are con-
nected in series for a total length of about 40 mm, achieving
four degrees of freedom via six actuators (three per SLU).
Including gripper actuation, the AU contains a total of seven
control axes. In a separate setup, the AU itself is teleoperable
in four degrees of freedom (three translations and a rotation
about the stem) for coarse positioning. A second Snake and a
pair of seven-dof da Vinci master controllers are integrated to
create a 36-axis bimanual manipulator platform. The robot,
as well as analysis of the push-pull actuation modes, is
described in greater depth in [1], [S], [23], [24].



V. EXPERIMENTS AND RESULTS

Robot control software runs on an RTAI-patched Linux
PC with a 2 GHz Pentium 4 processor and 512 MB of
RAM. At the trajectory level, the software accepts six-dof
Cartesian configurations and computes the inverse kinematics
in 125 Hz cycles. The resulting joint values are transferred
to the servo level, which updates the actuator positions at
1 kHz (nominal). The algorithm follows the constrained
optimization approach described in [24], [25].

The optimization framework implemented as part of the
robot control software allows us to run simplified experi-
ments without having to reduce the complexity of the original
algorithm. Given that the end effector can move with only
four degrees of freedom, orientations within the dexterous
workspace can be ensured at some position by adjusting the
weights of the least squares minimization problem. The tip
orientation is given by the forward kinematics in (1) [1].

Rtip =
A25(s0—1)+1  —s86c8(s60—1) cOcd 1)
—58c8(s0—1) —c*5(s0—1)+50 —cOsd
—cOcd cOsd 50

Here, 6 and & are the angles illustrated in Fig. 7 and s
and c are shorthand for sin and cos. By equating (1) to the
yaw-pitch-roll representation of a rotation matrix, we find an
expression for the orientation in terms of yaw (7), pitch (),
and roll (@) angles. Then solving for ¢, we obtain

o = tan-! < sin B siny ) '
cosf3 +cosy

In one test we measure the robot path corresponding
to an input path, a composition of yaw and pitch varying
sinusoidally (£45°, 0.1 Hz, in phase). Because the roll angle
is a function of yaw and pitch and varies slowly, only ¢ needs
to be shown. As a reference, ¥ and 8 correspond to rotations
about the robot y- and x-axes respectively, and the z-axis is
aligned with the stem as mentioned above. Also listed are
servo loop duty cycles (busy periods), measured by pulsing
the parallel port and capturing the signals on an oscilloscope.

2

A. Number of Nodes

To determine the scalability of the system, the test input
path is applied with one, two, and three nodes connected.
Though the extra nodes do not drive mechanical components,
the behavior of an n-node, 7m-axis system is faithfully
represented from an I/O latency standpoint. The resulting
paths are plotted in Figs. 8a and b. There appears to be
no effect from increasing nodes, likely because the extra
overhead does not lead to violated timing requirements.

The times listed in Table I show that the duty cycle
of the servo loop increases with the number of nodes.
The computer can write all nodes with a single broadcast
packet, so the time increase is due primarily to extra read
transactions (computation and transfer times for additional
axes are negligible, on the order of a few microseconds total
[4]). A rough extrapolation based on an additional 40 us
of latency per node suggests that this specific system can
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Fig. 8. Path of the robot with test input and 1 kHz servo rate. (a) With one
node (n=1). (b) With n=3. (c) With n=1 and a 4x faster input. There are no
noticeable differences between 1-3 nodes, while a slight lag in (c) is visible.
Time axes have been shifted and truncated (from 80 s) for comparison.

accommodate up to six nodes while running at a 50% duty
cycle. This figure may be increased by improving upon the
naive implementation of read transactions.

To illustrate the dominance of the robot’s mechanical
bandwidth over the controller latency, the result of a faster
sinusoidal command (0.4 Hz) is shown in Fig. 8c. There is
a delay of about 60 ms, whereas no delay is discernible in
the plots above it.

TABLE I
SERvVO Loopr DUTY CYCLES

# of Nodes (At 1 kHz) Servo Rates (One Node)
Nodes Duty Cycle Rate Duty Cycle

1 298 us — 30% 800 Hz | 288 us — 23%

2 334 us — 33% 1000 Hz | 298 us — 30%

3 356 us — 36% 1250 Hz | 290 us — 36%

2000 Hz | 294 us — 59%

B. Servo Rates

We test the performance of the system at various servo
rates, using one node, to determine its configurability in this
scenario. For servo rates of 800, 1000, 1250, and 2000 Hz,
the maximum error of the robot position from the command
is 6.9 x 1073 degrees in each case under the test input. The
paths are similar to those shown in Figs. 8a and b and are
thus omitted. These results suggest that the controller is able
to run at different rates without affecting functionality. The
servo loop duty cycles are listed in Table I. Bus transaction
latencies prescribe an upper limit on the servo rate. In
keeping the duty cycle at a safe margin (roughly 50%), the
robot appears to work as intended.

C. Teleoperation

A teleoperation setup is used to evaluate the performance
of the control system under realistic conditions. Position
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Fig. 9. Path of the robot teleoperated by a PHANTOM Omni.

commands from a PHANTOM Omni haptic device are sent
over a local area network to the robot computer. The robot
of Fig. 4 is used. To expand this test, two nodes (14 control
axes) are used; the servo rate is set at 1 kHz.

Fig. 9 displays the path taken by the robot in response to
arbitrary motion commands from the Omni over a period of
60 seconds. The system appears to work as intended, except
where abrupt changes in the path are commanded; we suspect
these are due to the limitations of the robot itself.

VI. CONCLUSIONS AND FUTURE WORK

We presented a scalable robot controller design that uses a
high-speed serial network, IEEE 1394, as the communication
link between the computer and actuated joints. We described
this centralized computation, distributed I/O approach, dis-
cussed the technologies that enable it, and outlined its
advantages over traditional control schemes.

Real-time performance of the controller was demonstrated
by application to the Snake Robot, a dexterous multi-axis
robot designed for MIS of the throat. This approach is fea-
sible for real-time control with rates up to several kilohertz;
higher rates such as 10 kHz appear to be challenging with
the current setup based on the measured latencies.

Future work includes implementing efficient read trans-
actions for multiple nodes, and making the API compatible
with the Surgical Assistant Workstation (SAW), a medical
robotics framework currently in development [26].
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