
 1 Copyright © 2004 by ASME

Proceedings of DETC’04
ASME 2004 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
September 28 – October 2, 2004, Salt Lake City, Utah USA

DETC2004-57701

A GENERIC PIPELINED TASK SCHEDULING ALGORITHM FOR FAULT-TOLERANT
DECENTRALIZED CONTROL OF A SEGMENTED TELESCOPE TESTBED

Salvador Fallorina

Helen Boussalis

Charles Liu

Khosrow Rad

Jane Dong

Dani Nasser

Paul Thienphrapa

Structures, Pointing, and Control Engineering Laboratory

Department of Electrical & Computer Engineering
California State University, Los Angeles

5151 State University Drive
Los Angeles, California 90032 USA

ABSTRACT
Control of complex structures requires high computational

power to achieve real-time performance. Through decentralized
techniques, a complex structure can be controlled by multiple
lower-order local controllers, leading to reduced computational
complexities. Furthermore, a decentralized approach can both
simplify the development of parallel controllers and facilitate
fault-tolerant designs. In our research, multiple digital signal
processors are employed in a NASA-sponsored segmented
telescope testbed to increase the throughput of control tasks.
Although increased performance is realized when subsystems
are statically mapped to specific processors for control,
inefficiency arises if the number of subsystems M is not an
integer multiple of the number of processors P (M > P) because
(M mod P) processors are necessarily controlling more
subsystems than others. Optimality is sacrificed because
processors with lighter loads wait for processors with heavier
loads. Furthermore this mechanism does not lend itself
favorably towards fault tolerance because the failure of a single
processor will result in the failure of its subsystem.

This paper describes the design and implementation of a
pipelined task mapping approach for the decentralized control
of a segmented reflector telescope testbed. In our pipelined

processing implementation only four of the six subsystems are
processed in any given control cycle; the two unprocessed
subsystems in each cycle propagate about the system in a
round-robin fashion, so processors are never idle. Fault
tolerance is facilitated because processors are no longer tied to
specific subsystems. Instead, control computations are
distributed dynamically such that the pipeline flow structure is
maintained. The implementation of a watchdog technology is
presented for detecting the possible processor failures.
Experimental results are shown comparing the performance of
the pipelined and straightforward approaches. The throughput
of the system has also been estimated on a system with a larger
number of processors. Such estimation shows the linearity of
speedup achieved by using the pipelined approach.

Keywords: decentralized control, pipelined task mapping,
pipelined task scheduling, parallel processing, fault detection,
fault tolerance, watchdog

1. INTRODUCTION
As the successor to the Hubble Space Telescope (HST), the

James Webb Space Telescope (JWST), formerly known as
Next Generation Space Telescope (NGST), requires a larger
light-gathering mirror capable of detecting faint signals [1].

 2 Copyright © 2004 by ASME

Due to the manufacturing and deployment difficulties of using
a monolithic piece of glass, the primary mirror of the JWST
will consist of several smaller reflecting panels. However, a
reflector built from segments relies on an active control system
for precision alignment of the optical surface. This control
system is responsible for achieving high-precision figure
control and maintenance of the reflector surface to a calibrated
parabolic reference figure in a dynamic disturbance
environment.

To study the control of such large segmented optical
systems, the National Aeronautics and Space Administration
(NASA) in 1994 provided funding to establish the Structures,
Pointing, and Control Engineering (SPACE) Laboratory at the
California State University, Los Angeles (CSULA). One of the
major goals of this project is to design and fabricate a testbed
that resembles the complex dynamic behavior of a segmented
space telescope.

In the present study, a decentralized control design
approach has been deployed to provide improved load
balancing and fault tolerance. In this approach, each individual
controller task is scheduled in a pipelined fashion among the
available processors, and the sequential order of its control
cycles can be observed. This method allows perfect load
balancing for any combination of the numbers of nodes and
tasks. Task mapping and rescheduling are used to handle the
cases when one or more processors fail. A similar technique
can also be employed to optimize the parallel processing of
tasks when failed processors are recovered.

This paper is organized as follows: Section 2 presents the
system description of the SPACE testbed. Section 3 gives an
overview of the system decentralization. In Section 4, the
parallel design of an embedded platform for decentralized
control is described. Various task mapping and scheduling
approaches are proposed and analyzed. Section 5 addresses the
implementation of the proposed parallel design and presents the
results. Finally conclusions are given in Section 6.

2. SYSTEM DESCRIPTION OF THE SPACE TESTBED
Figure 1 shows the major features of the SPACE testbed,

which is designed to emulate a Cassegrain telescope of 2.4-
meter focal length with performance comparable to an actual
space-borne system [4]. The primary mirror of the SPACE
testbed, supported by a lightweight truss, is composed of a ring
of six actively controlled hexagonal panels arranged around a
fixed central panel. The primary mirror is fitted with an
ensemble of 42 inductive sensors that provide measurements of
relative panel displacement and angle. Three voice-coil linear
actuators are mounted on each panel to provide three degrees of
freedom for each segment. The SPACE testbed’s data
acquisition system consists of digital signal processors and dual
A/D and D/A converter packages from Pentek.

Because the quality of images collected by the JWST is a
function of shaping precision in the primary mirror, the control
processing system must respond to stimuli within hard real-
time constraints. To achieve real-time performance, the
designed control algorithm needs to be implemented using a
sampling rate of 20-40 times the system bandwidth [10]. The
SPACE testbed has a 50 Hz system bandwidth, so control
calculations must be performed within 1.0 millisecond. While a
single high-performance processor can provide sufficient
computational power, this real-time requirement can also be

achieved through the application of parallel processing. The use
of multiple low-end processors provides an economic solution
to increase throughput, thereby improving the system’s
responsiveness to panel disturbances. Furthermore this
arrangement allows the implementation of fault tolerance
schemes.

active secondary mirror

primary mirror

isolation platform

bi-pod supports

supporting truss

actuator

sensor

Figure 1: SPACE testbed

3. APPLICATION DESCRIPTION

3.1. SYSTEM DECENTRALIZATION
The control of large flexible structures has been an

important problem in a variety of space programs. As described
in Section 2, the SPACE testbed consists of a large number of
structural components, as well as sensors and actuators leading
to mathematical models that involve hundreds of states. Even
after the application of model reduction techniques, the
centralized model of the telescope has over 200 states
complementing 18 edge sensors and 18 actuators.
Consequently, the design of control laws based on conventional
methodologies becomes exceedingly difficult. Decentralized
control appears to be a viable approach in circumventing the
difficulties related to the dimensionality problem.

Due to the nature of the structure, decentralized techniques
are employed for the development of control laws to
accomplish both fault tolerant precision pointing and reflector
shape control. Decomposition techniques are implemented,
resulting in physical decentralization of the structure into six
lower-order subsystems.

The equations of motion of the system assume the form

dBuBKM 21 +=+ δδ&& . (1)

 3 Copyright © 2004 by ASME

M is the mass matrix, K is the stiffness matrix, δ is a position

coordinate vector, B1 and B2 are force amplitude matrices, u is a
control-input vector and d is a disturbance vector.

For control purposes the following state-space
representation of the composite system is derived from eq. (1):

Cxy

BuAxx

=
+=&

 (2)

Decomposing the system (2) into six subsystems according to
the physical structure illustrated in Figure 2 yields eq. (3).

iii

iii
i

iiiiiii

xCy

dBuBxAxAx

=

+++= ∑
=

21

6

1

&
 (3)

Figure 2: Top view of SPACE testbed primary mirror

The first term,

iii xAx =& (4)

is the isolated component of eq. (3), and

[]T

i

T

iix δδ &= . (5)

As illustrated in Figure 3, the system is naturally

decentralized by treating each of the six peripheral segments of
the primary mirror and its associated supporting structure as an
isolated subsystem. Each subsystem is identified by three
command inputs to the actuators and three outputs which are
measured by the edge sensors. Local control algorithms are
developed for each of the six isolated subsystems.

To follow the consistency of discrete control algorithms,
the system is represented in the discrete state form of eq. (2).

)()(

)()()1(

11

111

kxCky

kukxkx

nxrxnrx

mxnxmnxnxnnx

=
Ψ+Φ=+

 (6)

This discrete state equation represents an n

th
-order system with

m inputs and r outputs, where Ф is the state transition matrix,
x(k) is the state vector, u(k) is the control signal vector, and y(k)
is the output vector.

As an implementation example, we refer to the
replacement of a single 200

th
-order centralized controller that

would be designed to control the primary mirror by six 12th-
order local controllers running simultaneously to maintain the
precision of the primary mirror shape. This method reduces the
required computational difficulty and facilitates both parallel
implementations and fault-tolerance. The control calculations
for each of the six subsystems are represented by

)()()(

)()()1(

133311212313

133121121212112

keDkxCku

kekxkx

xxxxx

xxxxx

+=
Ψ+Φ=+

 (7)

H Controller
H Controller

Neural NetworkController

2

∞

H Controller
H Controller

Neural NetworkController

2

∞

Σ

Figure 3: Decentralized control system block diagram

3.2. CONTROL PROCESS FOR THE SPACE TESTBED
The single-processor implementation of a decentralized

controller for the SPACE testbed is depicted in Figure 4. After
some initialization procedures, the control cycle starts by
reading edge sensor signals which are geometrically
transformed into virtual points, which in turn indicate the

displacement and positions of the panels. The next sequence of
tasks consists of calculating control commands for six
subsystems. A single task involves the control calculations for a
single subsystem (eq. (7)). Resultant control signals are sent to
actuators to properly position the panels. These tasks must take
place within a specified sampling period.

The disadvantages of sequential implementation include
extended execution time and lack of fault-tolerance. However,
within this cycle, the decentralized controllers present
opportunities for parallel execution. Through parallelization,
tasks can be conveniently assigned to available processors.

P0

Time

P
ro

c
e
s
s
o
r

Sample Period

2 3 4 5
Data

Input
Control

Output

Data

Storage

Virt.

Trans.
1 6

Figure 4: Sequential program of decentralized control

Reference
Panel

Subsystem

1

5

4

3

6 2

 4 Copyright © 2004 by ASME

4. FAULT-TOLERANT PARALLEL DESIGN
Parallel processing is applied in order to achieve

decentralized real-time performance. Based on our model of
decentralized control, M tasks will be executed in parallel
among P processors in an iterative fashion.

4.1. COMPUTATIONAL FEATURES
The computational features of the decentralized tasks are

summarized as follows:
1. Each task is not further decomposed.
2. The computational complexities of all tasks are identical.
3. Each task completes a control cycle. The next control cycle

cannot be scheduled until the next sample of the input
signals has been received by its corresponding sensors.

4. There is no significant data dependency among the tasks.
Different tasks can be updated in different control cycles in
an arbitrary order.
Dependencies between the subsystems are negligible. The

six panels of the primary mirror do not need to cooperate with
each other to achieve precision shaping because the local
controllers align the subsystems against a calibrated parabolic
reference.

4.2. A STRAIGHTFORWARD TASK MAPPING AND
SCHEDULING APPROACH

Based on the features described in Section 3.1, one
straightforward approach is to assign the tasks to the processors
as evenly as possible within the same control cycle. If M is a
perfect multiple of P, then perfect load balancing is achieved by
evenly distributing the tasks among the processors. Otherwise,
a subset of the processors will be idle during certain control
cycles due to the load imbalance. Such a scenario is illustrated
in Figure 5 with P = 4, and M = 6. In this approach the length
of the control cycle must extend to the amount of time required
by the slowest processors, that is, the processors with the
heaviest loads. Optimal capacity is not achieved in this
situation because processors with lighter loads are idle while
waiting for processors with heavier loads to complete their
tasks.

P
1

Time

P
ro

c
e

s
s
o

r

P
2

P
3

P
4

1

2

3

4

5

6

Sample Period

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure 5: Straightforward parallel processing (P=4, M=6)

Furthermore this mechanism does not lend itself favorably

towards fault tolerance because the failure of one processor will
result in the failure of its corresponding subsystems, an
unacceptable scenario.

4.3. PIPELINED TASK MAPPING AND SCHEDULING
Capitalizing on the nature of decentralized control, a more

sophisticated parallel design approach has been deployed to

provide load balancing and fault tolerance. Using this approach,
each processor has the capability to handle all control
calculations for any subsystem. Each individual task is
scheduled in a pipelined fashion among the available
processors, so the sequential order of the control cycles can be
observed. Figure 6 illustrates the idea of the pipelined task
mapping and scheduling.

Time

P
ro

c
e

s
s
o
r

Sample Period

1

6

5

4

2

1

6

5

3

2

1

6

4

3

2

1

5

4

3

2

6

5

4

3

1

6

5

4

2

1

6

5

3

2

1

6

P
1

P
2

P
3

P
4

Figure 6: Pipelined parallel processing (P=4, M=6)

This approach allows perfect load balancing for any

numbers of P and M. Furthermore, this technique promises to
tolerate failure of one or more processors, since any one of the
functioning nodes is able to control any subsystem. In this
design, each processor keeps a copy of all of the constant
matrices in its local memory; i.e., Ф’s, ψ’s, C’s, and D’s for all
M controllers. While large values of M require more local
memory for each processor, this approach reduces the traffic on
the common bus due to the accesses of the shared memory
space. On the other hand, the sensor input data, state vectors,
and the calculated control output signals are passed between the
master and slave processors via the high-speed interprocessor
communications ports. The overhead incurred using message-
passing is smaller than the latency of using shared global
memory, because using global memory in this manner
introduces considerable bus contention. Note that the message-
passing overhead is negligible relative to control computations,
making it a practical communications solution.

Note that in this real-time embedded system, the control
signals of a specific decentralized controller are used to trigger
the actuators to move the corresponding panel. Sensor readings
of panel displacements are read and represented by an input
vector. The input vector is then used for the operation of the
next iteration of the control output. Thus, there is an automatic
serialization between the accesses of the global vectors; no
racing problem can occur.

4.4. PIPELINED TASK MAPPING AND SCHEDULING
WITH FAULT TOLERANCE

Figure 7 shows the generalized tasking mapping and
scheduling using the pipelined approach with M tasks and P
processors, where M and P, M > P, can be any arbitrary
positive integers. Note that task i (1 ≤ i ≤ M) is initially
scheduled at cycle i on processor P1. It is then scheduled for the
following P-1 consecutive cycles on processors P2 through Pp.
After the first P times of the scheduling, task i is re-scheduled
back to processor P1 at cycle M+i and ripples to the rest of the
P-1 processors based on the pattern described in the first P
times of the scheduling.

 5 Copyright © 2004 by ASME

1 2 3 M-1 M 1

1 2 3 M-1

1 2 3 M-1

M

M

1

2

1 2 3 M-1

1 2

M

M

M

M

M-1

M-1

M-1

M-2

M-2M-3

...

... M-P+1

Time

P
ro

c
e
s
s
o

rs

1
2

3
4

5
P

..
.

Figure 7: Generalized pipelined parallel processing

Task remapping and rescheduling are used to

accommodate the occurrences of processor failures and their
recovery. For instance, if Pi fails during a certain control cycle,
the processors P1 through Pi-1 must stall for one control cycle.
Then, the processor identifiers of processors Pi through Pp will
be decremented by one. The stalling approach is used to
simplify the buffering complexity since the input to a cycle
depends on the output of its previous cycle. The stalling also
preserves the original pipeline sequence, which allows the
control of adjacent tasks during one cycle. Figures 8 and 9
illustrate this principle in action as P3 fails at time period t5.
Controllers 4 and 5, which were originally meant to be handled
by processors P2 and P1 respectively at period t5, are shifted to
the next control cycle.

1 2 3 4 5 64 5 6

1 2 3 4 5 61 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

5 6

6

1 2 3

1 2

1

Time

P
1

P
2

P
4

P
3

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

Figure 8: Failure of P3

1 2 3 4 5 64 5 6

1 2 3 5 61 2 3 4 5 6

1 2 3 4 5 6

6

1 2

1

Time

P
1

P
2

P
4

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

Figure 9: P1 and P2 stalls after failure of P3

This stalling technique can be used in the event of a failed-

processor recovery. Suppose that a processor is recovered
between Pi and Pi+1. The newly inserted processor will be
assigned an identifier, Pi+1. Accordingly, the old identifiers Pi+1

to PP will be incremented by one. Also, if Pi has performed task
j in the previous cycle, the newly inserted processor Pi+1 will
perform the same task, i.e. task j, in the current cycle. Then, the
processors Pi+2 through Pp will stall for the current cycle. Using
this approach the controller sequences can be, consequently,
resumed. This feature is illustrated in Figure 10.

Figure 10: P4 stalls after addition of P3 at t5

More generally, if multiple processors Pk should fail during

a given control cycle, then each remaining processor Pj must
stall execution for one control cycle for each failed processor
where j < k. Let P0, …, P4 denote the five processors in an
example system. If during a control cycle processor P2 fails,
then processors P0 and P1 would have to stall for one execution
cycle, while processors P3 and P4 would continue execution as
usual. Now consider the example shown in Figure 11 involving
multiple processor failures. If failures are detected in processors
P1 and P3, then processor P2 would have to stall execution for
one control cycle (P2 < P3), while processor P0 would need to
stall for two (P0 < P1, P3). Processor P4 would proceed as usual
since P4 > P1, P3. Such an arrangement of pipelined task
mapping, in addition to minimizing processor idle time, allows
the system to execute control processing correctly and
sequentially despite experiencing the failure of one or more
processors within the same control cycle. Recovery of multiple
previously-failed processors within a single control cycle can
be handled similarly: functioning processors would stall
execution for one control cycle for each recovered processor
with lower-number identifiers.

Figure 11: Handling multiple failures in one cycle

2 3 4 5 6 5 6 1

1 2 3 4 5 61 2 3 4 5 6

1 2 3 4 5 6

6

1 2 3

1 2

Time

P
1

P
2

P
4

P
3

t
1 t

2
t
3

t
4

t
5

t
6 t

7
t
8 t

9

3 4 5 6 1

 6 Copyright © 2004 by ASME

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS
The standard and pipelined approaches are being

implemented on the SPACE testbed with P = 4, M = 6. This
configuration promotes efficient use of available processors and
is resilient to processor failures.

5.1. COMPUTER ARCHITECTURE
The real-time embedded system, shown in Figure 12,

utilizes a Pentek 4285 board that is configured with four
TMS320C40 digital signal processors [9]. Each processor has
its own local memory in addition to a globally shared memory
space. High-speed bidirectional communication ports allow
direct message passing between processors, while the shared
global random access memory (RAM) is accessed through a
common bus. Here, the processors are arranged in a tree
topology with one processor configured as the master since
only it has access to the digital-to-analog (D/A) and analog-to-
digital (A/D) converters. These signal converters, in turn, are
connected to the actuator amplifiers and sensors respectively.
The control of the primary mirror requires 18 sensor inputs and
18 actuator outputs; this multiple input-multiple output
(MIMO) system attests to the computational requirements of
this application.

The individual processing units utilized are 32-bit floating
point digital signal processors that incorporate on-chip parallel
processing features to obtain high individual performance as
well as making them conducive to multiple processor
configurations. In particular, the high-speed bidirectional
communication ports provide zero glue logic, direct
communication between processors. Other C40 specifications
include: 40-ns instruction cycle time, 60 MFLOPS, and 6-
channel direct memory access (DMA) [8].

Printer

Disk storage

Host

SCSI

Card

Pentek

4200

MIX Card

Pentek

6102

D/A

Pentek

6102

D/A

Pentek

6102

D/A

8 8 8

8 2

VME BUS

Glentek Power Amplifiers

8 8 2

To 18 Actuators

8 8 8

Kaman Bank of Sensor Amplifiers

Pentek

6102

A/D

Pentek

6102

A/D

Pentek

6102

A/D

8 8 2
18 Edge Sensor Signals

(for primary mirror control)

> 70 sensor readings

Pentek

6102

A/D

Pentek

6102

A/D

Pentek

6102

A/D

Pentek

6102

A/D

Pentek

6102

A/D

8 8 8 8 8
Segmented

Telescope

Testbed

88888

Pentek

6102

A/D

Pentek

6102

A/D

8 8

88

Pentek 4285 DSP Board

Proc A

Proc E Proc F

Figure 12: Computer architecture

The low processor count is appropriate primarily for this

type of computationally intensive application. Message passing
of input, state, and output vectors is minor in comparison to the
calculation of state-space equations.

Using this architecture, the processors are organized into a
tree topology as presented in Figure 13. Based on the current
configuration of the embedded system, one processor is

assigned the role of master which handles the sensor data input
and control signal output.

Master
P

1

Slave
P

3

Slave
P

4

Slave
P

2

Input:

Sensor Data

Output:

Control Commands

Figure 13: Decentralized control tree topology

For each control cycle, the master receives input data from

the sensors and distributes them to the slave processors. Each of
the nodes then performs the control signal calculations. The
resulting signals are collected by the master, which then sends
the output data to the actuators.

5.2. PARALLEL IMPLEMENTATION
Using a straightforward parallel approach, the six separate

controllers can be conveniently assigned to available
processors. Figure 14 depicts a straightforward task scheduling
approach including input and output (I/O) and message passing
tasks. Each processor is statically mapped to a predetermined
subsystem such that it performs control computations for only
its respective subsystem(s). Each of the nodes has the Ф, Ψ, C,
and D matrices only for its assigned subsystem(s) in local
memory. In each control cycle, the master passes digitized
sensor data, as well as state vectors, to the slave processors.
After the control calculations are performed, the resulting state
vectors x(k) and output control signals u(k) are gathered
together by the master, the latter used to trigger the actuators.

Figure 14: Straightforward task scheduling for P=4, M=6

As discussed in Section 4.3, load imbalance may occur

using the straightforward task scheduling approach. Thus the
pipelined approach is also implemented. The pipelined task
scheduling procedure is illustrated in more detail in Figure 15.
In this design, each node performs the control calculations for
different subsystems, based on the pipelined task mapping
described in Section 4.3. Each node has the Фi, Ψi, Ci, and Di
matrices for each of the six subsystems in its local memory (i =
1, 2, 3, …, 6). At the beginning of each control cycle, the
master passes the state vectors xi(k) in addition to the digitized

 Control Cycle

1 2

3 4

5

Control
OutputP

1

Time

P
2

P
3

Send
Data

Rec.
Data

Rec.
Data

Send
Data

Send
Data

Rec.
Data

Data
Input

6 Send
Data Rec.

Data P 4
Virt.
Tran

Virt.
Tran

Virt.
Tran

Virt.
Tran

Data
Storage

P 0 P 1 P 2 P 3

S h a r e d M e m o r y

M a in B u s

L o c a l
M e m o ry

L o c al
M em o ry

L o c al
M em o ry

L o c a l
M em o ry

C o m m u n ica tio n P o rts

4 2 8 5 D S P B o a rd

 7 Copyright © 2004 by ASME

sensor data to the slave processors. After the control
calculations are executed, the new state vectors xi(k+1) are also
gathered by the master to pass to the appropriate slaves for the
next cycle.

Figure 15: Pipelined task scheduling for P=4, M=6

The cycle resumes again with the nodes running a different

set of controllers based on the pipelined task mapping. This
approach limits the amount of time the processors are idle.
There is some minute overhead due to an increase in the
amount of data being passed around and the increased
repetition of data input and output.

5.3. FAULT DETECTION AND RECONFIGURATION
Dynamic task mapping is achieved through establishing a

protocol in the system that detects failed nodes and
reconfigures the remaining processors to handle the failures.
The reconfiguration of the processors when faulty nodes are
detected is discussed in Section 4.4. One viable approach of
detecting processor failures is through a watchdog timer. One
of the processors is designated as the watchdog to the other
processors and maintains a counter for each node. By the end of
each control cycle, all processors must send a counter reset
signal to the watchdog using an interprocessor interrupt. Failure
is detected and reported by the watchdog if it does not receive
the signal by that time. Upon detection of failure, the watchdog
updates the status flag in shared memory for each node,
indicating the working state of each processor. Flags indicate
processor state and are used to reschedule tasks using the
stalling technique described in Section 4.4 as necessary.

The fault detection scheme is shown in Figure 16. In the
flowchart shown, processor A represents a master processor,
which sends edge sensor data to processor B, a slave processor.
Here the watchdog has two timers used to check the two nodes.
Each node sends a hardware interrupt to the watchdog at the
end of each control cycle. The interrupt restarts the timer
associated with its source. A faulty node is detected if any of
the two nodes fails to send the interrupt signal within the
specified time limit. A flag is updated in shared memory for
identification purposes each time a node sends the interrupt
signal.

The critical task of data I/O and distribution is handled by
a single master processor. Thus, the watchdog identifies which
of the processors has failed and performs the proper
reconfiguration scheme. For example, should the failed
processor be the master, another functional processor from a
prescribed list would take over the role of the master processor.

Task rescheduling is then managed by the watchdog as
specified earlier. Such a hand-over process is beyond the
intended scope of this paper.

Note that the watchdog is synchronized with the functional
nodes via shared memory. The scheme shown in Figure 16 can
be further generalized for any arbitrarily large number of nodes
with very few minor modifications. The robustness of the
watchdog processor is a topic of further studies.

Processor A Processor B

System

Initializations

- Read Input

Matrices

- Setup local

variables

counter==0 ?

Read A/Ds

PROCESS

DATA

Write to D/As

End

Data Storage

(SCSI to Host)

Yes

System

Initializations

- Read Input

Matrices

- Setup local

variables

counter==0 ?

End

Yes

Send Edge

Sensor Data

Receive Edge

Sensor Data

Send Control

Signal

Receive Control

Signal

Sync.
Flag

Read
Flag

Send Interrupt

Send Interrupt

Processor A receives

output signals for three

panels

Processor F receives

all the sensor readings

Watchdog

System

Initialization

- Install ISR

Time_A==0?

Read
Flag

Time_B==0?

Processor A Failed

- Master Reconfiguration

- Task Rescheduling

Yes

Yes

Flag_A==1?

ISR

Flag_B==1?

Decrement

Time variables

YesRestart Time_A

Yes

Interrupt Handler

PROCESS

DATA

Processor B Failed
- Task Rescheduling

Restart Time_B

Flag

A

Flag

B

Figure 16: Fault detection scheme

5.4. EXPERIMENTAL RESULTS
The straightforward parallel implementation of

decentralized controllers has been realized successfully in the
SPACE testbed. These decentralized control algorithm codes
were written in C and implemented using up to four DSPs
running in parallel. An estimate of the standard and pipelined
performance is shown in Figure 17.

The speedup curves demonstrate the effectiveness of the
parallel process. The processing time is reduced as the number
of processors is increased, thus allowing the attainment of real-
time control objectives. However, due to the coarse grain nature
of the decentralized controller tasks, there is no difference in
speed for the cases P = 3 and P = 4 using the straightforward
approach. In the case of four processors, P3 and P4 are idle
during half of the control cycle as illustrated in Figure 5.

In the cases P = 1 to 3, the straightforward approach yields
better speed-up results than pipelining due to the overhead
incurred under pipelining, which is caused by message passing
and the increased repetition of data input and output. However,
the pipelined task mapping technique shows superiority in
performance for the cases P = 4 and 5 due to increased
throughput. The results show that the pipelined scheduling
scheme, on one hand featuring fault tolerance, also resolves the
problem of load unbalancing of the straightforward approach,
leading to a more linear throughput as the number of processors
increases. Note that the results of speed-ups of five processors
are based on our estimation to show the effectiveness of the
generic approach of pipelined scheduling, since there are only
four physical processors in our system.

1

6

5

Control

Output

Sen
d

Data

Sen
d

Data

Rec.
Data

Rec.
Data

4 Virt.
Tran

P0

Time

 Control Cycle

P1

P2

Sen
d

Data

Rec.
Data

Rec.

Data

Data
Input

Rec.
Data

P3

Virt.
Tran

Virt.
Tran

Virt.
Tran

Data
Storage

 8 Copyright © 2004 by ASME

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Number of Processors

S
p

e
e
d

-u
p

Straightforward

Pipelined

Figure 17: Speedup of straightforward and pipelined task
mapping

6. CONCLUSION AND FUTURE WORK
Parallel program design and realization has been

implemented successfully using decentralized control
algorithms. The implemented decentralized controllers have the
following features: achieve desired system performance, allow
the use of small memory space, reduce computational
complexity, and simplify the development of parallel programs.
Real-time control performance has been achieved using a
straightforward parallel program design. However, such a
standard approach suffers from poor load balancing and is not
resilient to processor failures. By capitalizing on the natural
parallel structure of decentralized control, a fault-tolerant
pipelined parallel processing design is being developed. This
approach features improved load balancing for any number of
processors and tasks. Pipelined task mapping seeks to improve
the performance in the cases when M is not an integer multiple
of P. Additionally the system allows recovery from one or more
processor failures.

The potential starvation problem under pipelined task
mapping is currently being investigated. In every six sample
periods, each subsystem will be controlled in four periods and
will go uncontrolled in the remaining two. Proper functionality
remains uncompromised because the controllers view waiting
subsystems as having longer sampling periods. However,
questions arise concerning overall performance. Possible
modifications to pipelining include assigning multiple
subsystems to each processor per sample period, and shifting
the pipeline window by more than one task at a time. These
options will be compared tested against the original scheme.
Future work also involves studying special cases of faults, such

as handling master processor failure, as well as other fault
detection techniques.

7. ACKNOWLEDGMENTS
This work was supported by NASA under Grant URC

NCC 4158. Special thanks go to all the faculty and students
associated with the SPACE Laboratory.

8. REFERENCES
[1] Stockman, H., The Next Generation Space Telescope

Visiting a Time When Galaxies Were Young, June 1997.

[2] Boussalis, H., Decentralization of Large Spaceborne

Telescopes, Proceedings of the 1994 SPIE Symposium on
Astronomical Telescopes, 1994.

[3] Boussalis, H., Mirmirani, M., Chassiakos, A., and Rad, K.,

The Use of Decentralized Control in Design of a Large
Segmented Space Reflector, Control and Structures
Research Laboratory, California State University, Los
Angeles Final Report, 1996.

[4] Boussalis, H., Mirmirani, M., Rad, K., Morales, M.,

Velazquez, E., Chassiakos, A., and Luzardo, J.A., The Use
of Decentralized Control in the Design of a Large
Segmented Space Reflector, NASA URC Technical
Conference, Albuquerque, NM, February, 1997.

[5] Siljak, D., Decentralized Control of Complex Systems,

New York, Academic, 1991.

[6] Foster, Designing and Building Parallel Programs,

Addison-Wesley Publishing Company, Inc., 1995.

[7] Hennessy, J., and Patterson, D., Computer Architecture: a

Quantitative Approach, Morgan publishing, San Francisco,
CA, 1990.

[8] TMS320C4x User’s Guide, Texas Instruments, Inc., 1991.

[9] Octal TMS320C40 Processor Manual, Pentek, 1998.

[10] Liu, J., Real-time Systems, Prentice-Hall, Inc., 2000.

[11] Boussalis, H., Kosmatopoulos, E.B., Mirmirani, M., and

Ioannou, P.A., Adaptive Control of Multivariable
Nonlinear System with Application to a Large Segmented
Reflector, ACC 1998.

