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ABSTRACT 
Control of complex structures requires high computational 

power to achieve real-time performance. Through decentralized 
techniques, a complex structure can be controlled by multiple 
lower-order local controllers, leading to reduced computational 
complexities. Furthermore, a decentralized approach can both 
simplify the development of parallel controllers and facilitate 
fault-tolerant designs. In our research, multiple digital signal 
processors are employed in a NASA-sponsored segmented 
telescope testbed to increase the throughput of control tasks. 
Although increased performance is realized when subsystems 
are statically mapped to specific processors for control, 
inefficiency arises if the number of subsystems M is not an 
integer multiple of the number of processors P (M > P) because 
(M mod P) processors are necessarily controlling more 
subsystems than others. Optimality is sacrificed because 
processors with lighter loads wait for processors with heavier 
loads. Furthermore this mechanism does not lend itself 
favorably towards fault tolerance because the failure of a single 
processor will result in the failure of its subsystem. 

This paper describes the design and implementation of a 
pipelined task mapping approach for the decentralized control 
of a segmented reflector telescope testbed. In our pipelined 

processing implementation only four of the six subsystems are 
processed in any given control cycle; the two unprocessed 
subsystems in each cycle propagate about the system in a 
round-robin fashion, so processors are never idle. Fault 
tolerance is facilitated because processors are no longer tied to 
specific subsystems. Instead, control computations are 
distributed dynamically such that the pipeline flow structure is 
maintained. The implementation of a watchdog technology is 
presented for detecting the possible processor failures. 
Experimental results are shown comparing the performance of 
the pipelined and straightforward approaches. The throughput 
of the system has also been estimated on a system with a larger 
number of processors. Such estimation shows the linearity of 
speedup achieved by using the pipelined approach. 
 
Keywords: decentralized control, pipelined task mapping, 
pipelined task scheduling, parallel processing, fault detection, 
fault tolerance, watchdog 

1. INTRODUCTION 
As the successor to the Hubble Space Telescope (HST), the 

James Webb Space Telescope (JWST), formerly known as 
Next Generation Space Telescope (NGST), requires a larger 
light-gathering mirror capable of detecting faint signals [1]. 
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Due to the manufacturing and deployment difficulties of using 
a monolithic piece of glass, the primary mirror of the JWST 
will consist of several smaller reflecting panels. However, a 
reflector built from segments relies on an active control system 
for precision alignment of the optical surface. This control 
system is responsible for achieving high-precision figure 
control and maintenance of the reflector surface to a calibrated 
parabolic reference figure in a dynamic disturbance 
environment. 

To study the control of such large segmented optical 
systems, the National Aeronautics and Space Administration 
(NASA) in 1994 provided funding to establish the Structures, 
Pointing, and Control Engineering (SPACE) Laboratory at the 
California State University, Los Angeles (CSULA). One of the 
major goals of this project is to design and fabricate a testbed 
that resembles the complex dynamic behavior of a segmented 
space telescope. 

In the present study, a decentralized control design 
approach has been deployed to provide improved load 
balancing and fault tolerance. In this approach, each individual 
controller task is scheduled in a pipelined fashion among the 
available processors, and the sequential order of its control 
cycles can be observed. This method allows perfect load 
balancing for any combination of the numbers of nodes and 
tasks. Task mapping and rescheduling are used to handle the 
cases when one or more processors fail. A similar technique 
can also be employed to optimize the parallel processing of 
tasks when failed processors are recovered. 

This paper is organized as follows: Section 2 presents the 
system description of the SPACE testbed. Section 3 gives an 
overview of the system decentralization. In Section 4, the 
parallel design of an embedded platform for decentralized 
control is described. Various task mapping and scheduling 
approaches are proposed and analyzed. Section 5 addresses the 
implementation of the proposed parallel design and presents the 
results. Finally conclusions are given in Section 6. 

2. SYSTEM DESCRIPTION OF THE SPACE TESTBED 
Figure 1 shows the major features of the SPACE testbed, 

which is designed to emulate a Cassegrain telescope of 2.4-
meter focal length with performance comparable to an actual 
space-borne system [4]. The primary mirror of the SPACE 
testbed, supported by a lightweight truss, is composed of a ring 
of six actively controlled hexagonal panels arranged around a 
fixed central panel. The primary mirror is fitted with an 
ensemble of 42 inductive sensors that provide measurements of 
relative panel displacement and angle. Three voice-coil linear 
actuators are mounted on each panel to provide three degrees of 
freedom for each segment. The SPACE testbed’s data 
acquisition system consists of digital signal processors and dual 
A/D and D/A converter packages from Pentek. 

Because the quality of images collected by the JWST is a 
function of shaping precision in the primary mirror, the control 
processing system must respond to stimuli within hard real-
time constraints. To achieve real-time performance, the 
designed control algorithm needs to be implemented using a 
sampling rate of 20-40 times the system bandwidth [10]. The 
SPACE testbed has a 50 Hz system bandwidth, so control 
calculations must be performed within 1.0 millisecond. While a 
single high-performance processor can provide sufficient 
computational power, this real-time requirement can also be 

achieved through the application of parallel processing. The use 
of multiple low-end processors provides an economic solution 
to increase throughput, thereby improving the system’s 
responsiveness to panel disturbances. Furthermore this 
arrangement allows the implementation of fault tolerance 
schemes. 
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Figure 1: SPACE testbed 

3. APPLICATION DESCRIPTION 

3.1. SYSTEM DECENTRALIZATION 
The control of large flexible structures has been an 

important problem in a variety of space programs. As described 
in Section 2, the SPACE testbed consists of a large number of 
structural components, as well as sensors and actuators leading 
to mathematical models that involve hundreds of states. Even 
after the application of model reduction techniques, the 
centralized model of the telescope has over 200 states 
complementing 18 edge sensors and 18 actuators. 
Consequently, the design of control laws based on conventional 
methodologies becomes exceedingly difficult. Decentralized 
control appears to be a viable approach in circumventing the 
difficulties related to the dimensionality problem. 

Due to the nature of the structure, decentralized techniques 
are employed for the development of control laws to 
accomplish both fault tolerant precision pointing and reflector 
shape control. Decomposition techniques are implemented, 
resulting in physical decentralization of the structure into six 
lower-order subsystems. 

The equations of motion of the system assume the form 
 

dBuBKM 21 +=+ δδ&& . (1) 
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M is the mass matrix, K is the stiffness matrix, δ  is a position 

coordinate vector, B1 and B2 are force amplitude matrices, u is a 
control-input vector and d is a disturbance vector. 

For control purposes the following state-space 
representation of the composite system is derived from eq. (1): 
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Decomposing the system (2) into six subsystems according to 
the physical structure illustrated in Figure 2 yields eq. (3). 
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Figure 2: Top view of SPACE testbed primary mirror 

 
The first term, 
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is the isolated component of eq. (3), and 
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As illustrated in Figure 3, the system is naturally 

decentralized by treating each of the six peripheral segments of 
the primary mirror and its associated supporting structure as an 
isolated subsystem. Each subsystem is identified by three 
command inputs to the actuators and three outputs which are 
measured by the edge sensors. Local control algorithms are 
developed for each of the six isolated subsystems. 

To follow the consistency of discrete control algorithms, 
the system is represented in the discrete state form of eq. (2). 
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This discrete state equation represents an n

th
-order system with 

m inputs and r outputs, where Ф is the state transition matrix, 
x(k) is the state vector, u(k) is the control signal vector, and y(k) 
is the output vector. 

As an implementation example, we refer to the 
replacement of a single 200

th
-order centralized controller that 

would be designed to control the primary mirror by six 12th-
order local controllers running simultaneously to maintain the 
precision of the primary mirror shape. This method reduces the 
required computational difficulty and facilitates both parallel 
implementations and fault-tolerance. The control calculations 
for each of the six subsystems are represented by 
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Figure 3: Decentralized control system block diagram 

3.2. CONTROL PROCESS FOR THE SPACE TESTBED 
The single-processor implementation of a decentralized 

controller for the SPACE testbed is depicted in Figure 4. After 
some initialization procedures, the control cycle starts by 
reading edge sensor signals which are geometrically 
transformed into virtual points, which in turn indicate the 

displacement and positions of the panels. The next sequence of 
tasks consists of calculating control commands for six 
subsystems. A single task involves the control calculations for a 
single subsystem (eq. (7)). Resultant control signals are sent to 
actuators to properly position the panels. These tasks must take 
place within a specified sampling period. 

The disadvantages of sequential implementation include 
extended execution time and lack of fault-tolerance. However, 
within this cycle, the decentralized controllers present 
opportunities for parallel execution. Through parallelization, 
tasks can be conveniently assigned to available processors. 
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Figure 4: Sequential program of decentralized control 
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4. FAULT-TOLERANT PARALLEL DESIGN 
Parallel processing is applied in order to achieve 

decentralized real-time performance. Based on our model of 
decentralized control, M tasks will be executed in parallel 
among P processors in an iterative fashion. 

4.1. COMPUTATIONAL FEATURES 
The computational features of the decentralized tasks are 

summarized as follows: 
1. Each task is not further decomposed. 
2. The computational complexities of all tasks are identical. 
3. Each task completes a control cycle. The next control cycle 

cannot be scheduled until the next sample of the input 
signals has been received by its corresponding sensors. 

4. There is no significant data dependency among the tasks. 
Different tasks can be updated in different control cycles in 
an arbitrary order. 
Dependencies between the subsystems are negligible.  The 

six panels of the primary mirror do not need to cooperate with 
each other to achieve precision shaping because the local 
controllers align the subsystems against a calibrated parabolic 
reference. 

4.2. A STRAIGHTFORWARD TASK MAPPING AND 
SCHEDULING APPROACH 

Based on the features described in Section 3.1, one 
straightforward approach is to assign the tasks to the processors 
as evenly as possible within the same control cycle. If M is a 
perfect multiple of P, then perfect load balancing is achieved by 
evenly distributing the tasks among the processors. Otherwise, 
a subset of the processors will be idle during certain control 
cycles due to the load imbalance. Such a scenario is illustrated 
in Figure 5 with P = 4, and M = 6. In this approach the length 
of the control cycle must extend to the amount of time required 
by the slowest processors, that is, the processors with the 
heaviest loads. Optimal capacity is not achieved in this 
situation because processors with lighter loads are idle while 
waiting for processors with heavier loads to complete their 
tasks. 
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Figure 5: Straightforward parallel processing (P=4, M=6) 

 
Furthermore this mechanism does not lend itself favorably 

towards fault tolerance because the failure of one processor will 
result in the failure of its corresponding subsystems, an 
unacceptable scenario. 

4.3. PIPELINED TASK MAPPING AND SCHEDULING 
Capitalizing on the nature of decentralized control, a more 

sophisticated parallel design approach has been deployed to 

provide load balancing and fault tolerance. Using this approach, 
each processor has the capability to handle all control 
calculations for any subsystem. Each individual task is 
scheduled in a pipelined fashion among the available 
processors, so the sequential order of the control cycles can be 
observed. Figure 6 illustrates the idea of the pipelined task 
mapping and scheduling. 
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Figure 6: Pipelined parallel processing (P=4, M=6) 

 
This approach allows perfect load balancing for any 

numbers of P and M. Furthermore, this technique promises to 
tolerate failure of one or more processors, since any one of the 
functioning nodes is able to control any subsystem. In this 
design, each processor keeps a copy of all of the constant 
matrices in its local memory; i.e., Ф’s, ψ’s, C’s, and D’s for all 
M controllers. While large values of M require more local 
memory for each processor, this approach reduces the traffic on 
the common bus due to the accesses of the shared memory 
space. On the other hand, the sensor input data, state vectors, 
and the calculated control output signals are passed between the 
master and slave processors via the high-speed interprocessor 
communications ports.  The overhead incurred using message-
passing is smaller than the latency of using shared global 
memory, because using global memory in this manner 
introduces considerable bus contention.  Note that the message-
passing overhead is negligible relative to control computations, 
making it a practical communications solution. 

Note that in this real-time embedded system, the control 
signals of a specific decentralized controller are used to trigger 
the actuators to move the corresponding panel. Sensor readings 
of panel displacements are read and represented by an input 
vector. The input vector is then used for the operation of the 
next iteration of the control output. Thus, there is an automatic 
serialization between the accesses of the global vectors; no 
racing problem can occur. 

4.4. PIPELINED TASK MAPPING AND SCHEDULING 
WITH FAULT TOLERANCE 

Figure 7 shows the generalized tasking mapping and 
scheduling using the pipelined approach with M tasks and P 
processors, where M and P, M > P, can be any arbitrary 
positive integers. Note that task i (1 ≤ i ≤ M) is initially 
scheduled at cycle i on processor P1. It is then scheduled for the 
following P-1 consecutive cycles on processors P2 through Pp. 
After the first P times of the scheduling, task i is re-scheduled 
back to processor P1 at cycle M+i and ripples to the rest of the 
P-1 processors based on the pattern described in the first P 
times of the scheduling. 
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Figure 7: Generalized pipelined parallel processing 

 
Task remapping and rescheduling are used to 

accommodate the occurrences of processor failures and their 
recovery. For instance, if Pi fails during a certain control cycle, 
the processors P1 through Pi-1 must stall for one control cycle. 
Then, the processor identifiers of processors Pi through Pp will 
be decremented by one. The stalling approach is used to 
simplify the buffering complexity since the input to a cycle 
depends on the output of its previous cycle. The stalling also 
preserves the original pipeline sequence, which allows the 
control of adjacent tasks during one cycle. Figures 8 and 9 
illustrate this principle in action as P3 fails at time period t5. 
Controllers 4 and 5, which were originally meant to be handled 
by processors P2 and P1 respectively at period t5, are shifted to 
the next control cycle. 
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Figure 8: Failure of P3 
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Figure 9: P1 and P2 stalls after failure of P3 

 
This stalling technique can be used in the event of a failed-

processor recovery. Suppose that a processor is recovered 
between Pi and Pi+1. The newly inserted processor will be 
assigned an identifier, Pi+1. Accordingly, the old identifiers Pi+1 

to PP will be incremented by one. Also, if Pi has performed task 
j in the previous cycle, the newly inserted processor Pi+1 will 
perform the same task, i.e. task j, in the current cycle. Then, the 
processors Pi+2 through Pp will stall for the current cycle. Using 
this approach the controller sequences can be, consequently, 
resumed. This feature is illustrated in Figure 10. 
 

 
 

Figure 10: P4 stalls after addition of P3 at t5 

 
More generally, if multiple processors Pk should fail during 

a given control cycle, then each remaining processor Pj must 
stall execution for one control cycle for each failed processor 
where j < k. Let P0, …, P4 denote the five processors in an 
example system. If during a control cycle processor P2 fails, 
then processors P0 and P1 would have to stall for one execution 
cycle, while processors P3 and P4 would continue execution as 
usual. Now consider the example shown in Figure 11 involving 
multiple processor failures. If failures are detected in processors 
P1 and P3, then processor P2 would have to stall execution for 
one control cycle (P2 < P3), while processor P0 would need to 
stall for two (P0 < P1, P3). Processor P4 would proceed as usual 
since P4 > P1, P3. Such an arrangement of pipelined task 
mapping, in addition to minimizing processor idle time, allows 
the system to execute control processing correctly and 
sequentially despite experiencing the failure of one or more 
processors within the same control cycle. Recovery of multiple 
previously-failed processors within a single control cycle can 
be handled similarly: functioning processors would stall 
execution for one control cycle for each recovered processor 
with lower-number identifiers. 
 

 
 

Figure 11: Handling multiple failures in one cycle 
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5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
The standard and pipelined approaches are being 

implemented on the SPACE testbed with P = 4, M = 6. This 
configuration promotes efficient use of available processors and 
is resilient to processor failures. 

5.1. COMPUTER ARCHITECTURE 
The real-time embedded system, shown in Figure 12, 

utilizes a Pentek 4285 board that is configured with four 
TMS320C40 digital signal processors [9]. Each processor has 
its own local memory in addition to a globally shared memory 
space. High-speed bidirectional communication ports allow 
direct message passing between processors, while the shared 
global random access memory (RAM) is accessed through a 
common bus. Here, the processors are arranged in a tree 
topology with one processor configured as the master since 
only it has access to the digital-to-analog (D/A) and analog-to-
digital (A/D) converters. These signal converters, in turn, are 
connected to the actuator amplifiers and sensors respectively. 
The control of the primary mirror requires 18 sensor inputs and 
18 actuator outputs; this multiple input-multiple output 
(MIMO) system attests to the computational requirements of 
this application. 

The individual processing units utilized are 32-bit floating 
point digital signal processors that incorporate on-chip parallel 
processing features to obtain high individual performance as 
well as making them conducive to multiple processor 
configurations. In particular, the high-speed bidirectional 
communication ports provide zero glue logic, direct 
communication between processors. Other C40 specifications 
include: 40-ns instruction cycle time, 60 MFLOPS, and 6-
channel direct memory access (DMA) [8]. 
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Figure 12: Computer architecture 

 
The low processor count is appropriate primarily for this 

type of computationally intensive application. Message passing 
of input, state, and output vectors is minor in comparison to the 
calculation of state-space equations. 

Using this architecture, the processors are organized into a 
tree topology as presented in Figure 13. Based on the current 
configuration of the embedded system, one processor is 

assigned the role of master which handles the sensor data input 
and control signal output. 
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Figure 13: Decentralized control tree topology 

 
For each control cycle, the master receives input data from 

the sensors and distributes them to the slave processors. Each of 
the nodes then performs the control signal calculations. The 
resulting signals are collected by the master, which then sends 
the output data to the actuators. 

5.2. PARALLEL IMPLEMENTATION 
Using a straightforward parallel approach, the six separate 

controllers can be conveniently assigned to available 
processors. Figure 14 depicts a straightforward task scheduling 
approach including input and output (I/O) and message passing 
tasks. Each processor is statically mapped to a predetermined 
subsystem such that it performs control computations for only 
its respective subsystem(s). Each of the nodes has the Ф, Ψ, C, 
and D matrices only for its assigned subsystem(s) in local 
memory. In each control cycle, the master passes digitized 
sensor data, as well as state vectors, to the slave processors. 
After the control calculations are performed, the resulting state 
vectors x(k) and output control signals u(k) are gathered 
together by the master, the latter used to trigger the actuators. 
 

 
 

Figure 14: Straightforward task scheduling for P=4, M=6 

 
As discussed in Section 4.3, load imbalance may occur 

using the straightforward task scheduling approach. Thus the 
pipelined approach is also implemented. The pipelined task 
scheduling procedure is illustrated in more detail in Figure 15. 
In this design, each node performs the control calculations for 
different subsystems, based on the pipelined task mapping 
described in Section 4.3. Each node has the Фi, Ψi, Ci, and Di 
matrices for each of the six subsystems in its local memory (i = 
1, 2, 3, …, 6). At the beginning of each control cycle, the 
master passes the state vectors xi(k) in addition to the digitized 
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sensor data to the slave processors. After the control 
calculations are executed, the new state vectors xi(k+1) are also 
gathered by the master to pass to the appropriate slaves for the 
next cycle. 
 

 
 

Figure 15: Pipelined task scheduling for P=4, M=6 

 
The cycle resumes again with the nodes running a different 

set of controllers based on the pipelined task mapping. This 
approach limits the amount of time the processors are idle. 
There is some minute overhead due to an increase in the 
amount of data being passed around and the increased 
repetition of data input and output. 

5.3. FAULT DETECTION AND RECONFIGURATION 
Dynamic task mapping is achieved through establishing a 

protocol in the system that detects failed nodes and 
reconfigures the remaining processors to handle the failures. 
The reconfiguration of the processors when faulty nodes are 
detected is discussed in Section 4.4. One viable approach of 
detecting processor failures is through a watchdog timer. One 
of the processors is designated as the watchdog to the other 
processors and maintains a counter for each node. By the end of 
each control cycle, all processors must send a counter reset 
signal to the watchdog using an interprocessor interrupt. Failure 
is detected and reported by the watchdog if it does not receive 
the signal by that time. Upon detection of failure, the watchdog 
updates the status flag in shared memory for each node, 
indicating the working state of each processor. Flags indicate 
processor state and are used to reschedule tasks using the 
stalling technique described in Section 4.4 as necessary. 

The fault detection scheme is shown in Figure 16. In the 
flowchart shown, processor A represents a master processor, 
which sends edge sensor data to processor B, a slave processor. 
Here the watchdog has two timers used to check the two nodes. 
Each node sends a hardware interrupt to the watchdog at the 
end of each control cycle. The interrupt restarts the timer 
associated with its source. A faulty node is detected if any of 
the two nodes fails to send the interrupt signal within the 
specified time limit. A flag is updated in shared memory for 
identification purposes each time a node sends the interrupt 
signal. 

The critical task of data I/O and distribution is handled by 
a single master processor. Thus, the watchdog identifies which 
of the processors has failed and performs the proper 
reconfiguration scheme. For example, should the failed 
processor be the master, another functional processor from a 
prescribed list would take over the role of the master processor. 

Task rescheduling is then managed by the watchdog as 
specified earlier. Such a hand-over process is beyond the 
intended scope of this paper. 

Note that the watchdog is synchronized with the functional 
nodes via shared memory. The scheme shown in Figure 16 can 
be further generalized for any arbitrarily large number of nodes 
with very few minor modifications. The robustness of the 
watchdog processor is a topic of further studies. 
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Figure 16: Fault detection scheme 

5.4. EXPERIMENTAL RESULTS 
The straightforward parallel implementation of 

decentralized controllers has been realized successfully in the 
SPACE testbed. These decentralized control algorithm codes 
were written in C and implemented using up to four DSPs 
running in parallel. An estimate of the standard and pipelined 
performance is shown in Figure 17. 

The speedup curves demonstrate the effectiveness of the 
parallel process. The processing time is reduced as the number 
of processors is increased, thus allowing the attainment of real-
time control objectives. However, due to the coarse grain nature 
of the decentralized controller tasks, there is no difference in 
speed for the cases P = 3 and P = 4 using the straightforward 
approach. In the case of four processors, P3 and P4 are idle 
during half of the control cycle as illustrated in Figure 5. 

In the cases P = 1 to 3, the straightforward approach yields 
better speed-up results than pipelining due to the overhead 
incurred under pipelining, which is caused by message passing 
and the increased repetition of data input and output. However, 
the pipelined task mapping technique shows superiority in 
performance for the cases P = 4 and 5 due to increased 
throughput. The results show that the pipelined scheduling 
scheme, on one hand featuring fault tolerance, also resolves the 
problem of load unbalancing of the straightforward approach, 
leading to a more linear throughput as the number of processors 
increases. Note that the results of speed-ups of five processors 
are based on our estimation to show the effectiveness of the 
generic approach of pipelined scheduling, since there are only 
four physical processors in our system. 
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Figure 17: Speedup of straightforward and pipelined task 
mapping 

6. CONCLUSION AND FUTURE WORK 
Parallel program design and realization has been 

implemented successfully using decentralized control 
algorithms. The implemented decentralized controllers have the 
following features: achieve desired system performance, allow 
the use of small memory space, reduce computational 
complexity, and simplify the development of parallel programs. 
Real-time control performance has been achieved using a 
straightforward parallel program design. However, such a 
standard approach suffers from poor load balancing and is not 
resilient to processor failures. By capitalizing on the natural 
parallel structure of decentralized control, a fault-tolerant 
pipelined parallel processing design is being developed. This 
approach features improved load balancing for any number of 
processors and tasks. Pipelined task mapping seeks to improve 
the performance in the cases when M is not an integer multiple 
of P. Additionally the system allows recovery from one or more 
processor failures. 

The potential starvation problem under pipelined task 
mapping is currently being investigated.  In every six sample 
periods, each subsystem will be controlled in four periods and 
will go uncontrolled in the remaining two.  Proper functionality 
remains uncompromised because the controllers view waiting 
subsystems as having longer sampling periods.  However, 
questions arise concerning overall performance.  Possible 
modifications to pipelining include assigning multiple 
subsystems to each processor per sample period, and shifting 
the pipeline window by more than one task at a time.  These 
options will be compared tested against the original scheme.  
Future work also involves studying special cases of faults, such 

as handling master processor failure, as well as other fault 
detection techniques. 
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