

A Scalable System for Real-Time Control of Dexterous

Surgical Robots

Paul Thienphrapa and Peter Kazanzides

Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218

Abstract—The requisite cabling and control processing for

surgical robots can become unwieldy as dexterity is

increased, due to the additional degrees of freedom.

Motivated by dexterous snake-like robots for minimally

invasive surgery, this paper details the development of a

low-level control system that uses IEEE 1394 (FireWire),

linking the computer to low-latency field-programmable

gate arrays, to distribute I/O while centralizing all control

computations. A standard programming interface is defined

as part of the control system to enhance its scalability.

These features increase the viability of complex surgical

robots and ease their development by reducing cables and

enabling the processing of many axes of control on a single

computer.

1. INTRODUCTION

Minimally invasive surgery (MIS) is often beneficial due to

reduction of trauma, leading to fewer complications and

shorter hospital stays. However, it poses a number of

challenges for surgeons, including constrained workspaces,

limited field of view, and lack of dexterity at the distal end.

Existing MIS tools are rigid, difficult to manipulate through

narrow insertion tubes, and they lack adequate suturing and

tissue reconstruction capability. In such situations, the

efficacy of a surgical robot is strongly tied to its dexterity.

Research on the Snake Robot [1] seeks to improve MIS of

the throat and upper airways by providing surgeons with

highly dexterous robotically-controlled tools. This dexterity

is achieved by incorporating more degrees of freedom (dof).

More sophisticated surgical tasks can be accomplished by

increasing dof, but the corresponding hardware increase

imposes a practical limit on the exploration of these ideas.

Similarly, research on different types of multi-axis surgical

robots is often mired in the hardware construction effort. In

response to these difficulties, this paper presents the

development of a system that is well suited for real-time

control of robots with many axes of control.

Figure 1 - Snake Robot prototype [3]

Figure 2 - Anatomy of a snake-like unit [2]

1.1. Background

A unique design targeted for MIS of the upper airways, the

Snake Robot features small, dexterous snake-like units

(SLUs). To avoid cluttering the work area, these SLUs are

attached to a hollow, narrow, meter-long shaft containing its

wires, and appear at the distal end of a laryngoscope; this

shaft-SLU assembly is teleoperable (see Figure 1).

The Snake Robot is an eight-dof (11-actuator) manipulator.

Multiple instances may be used for surgical tasks, depending

on the application. The distal end of each manipulator

consists of two SLUs connected in series; each SLU is

constructed using four super-elastic NiTi tubes. The

anatomy of an SLU is shown in Figure 2. The center tube,

the primary backbone, is connected to all discs, including

the base disc, end disc, and intervening spacer discs.

Three tubes surround the primary backbone at equally-

spaced distances, forming the secondary backbones. These

are fixed to only the end disc and are free to glide through

holes in the intermediate spacer discs. Two dof result from

pushing and pulling the secondary backbones using three

actuators located at the proximal end. The push-pull

actuation modes help prevent the backbones from buckling

while satisfying structural statics [2]. A second 2-dof SLU

is appended to the end of the first. The secondary

backbones of this second SLU pass through the hollow

secondary backbones of the first. Attached to the end of the

second SLU is a gripper that is actuated via a wire passed

through the hollow central backbone. This mechanical

composition allows for a high payload capacity with a small

size [3]. The existing SLUs are 4 mm in diameter.

The aforementioned actuators (seven actuators for four dof

and a gripper) are encased atop the shaft in a compact

cylindrical actuation unit (shown in Figure 1). The shaft-

actuation unit assembly itself can be guided with four dof

due to four actuators, leading to eight dof total. The Z-Θ

stage allows for translation along and rotation about the

shaft respectively. A passive universal joint mounted on a

five bar mechanism gives the shaft XY mobility. This stage

also stabilizes the robot against lateral perturbations.

Each Snake Robot is actuated by 11 dc motors, accounted

for by two three-axis SLUs, a gripper, a two-axis Z-Θ stage,

and a two-axis five bar mechanism. Two seven-axis da

Vinci masters are used to command two Snake slaves for

bimanual control. The pair of da Vinci masters we are using

is an engineering version that did not originally include a

controller.

The control system for the Snake Robot must be scalable in

order to handle 36 axes (i.e. two 11-axis Snakes and two

seven-axis da Vinci masters). A significant reduction in

dimensionality and hardware complexity was achieved via

the push-pull actuation of flexible wires combined with

derived kinematics [1], as opposed to actuation of several

precision joints. Nevertheless, the number of axes for the

Snake Robot remains considerable and can only increase as

robots are devised for more sophisticated surgical tasks.

1.2. Motivations and Objectives

The efforts presented here address important issues revealed

by our previous work [18], which itself originated from the

need to improve the old multi-axis controller of the Snake

Robot [2] and replicate the controller for other research

projects. The old controller utilizes a centralized I/O

arrangement, whereby command and feedback signals are

transmitted in raw analog form over long cables running

between the robot and the computer. Though the design is

conceptually straightforward, the cumbersome wiring

associated with it introduces complications such as noise,

cable drag, reduced reliability, and greater construction

effort. The debug space is vast as there are many candidates

for connectivity problems, so this approach limits the ability

to develop increasingly dexterous surgical robots.

The long term benefits of developing a control system using

IEEE 1394 are multifold. The high speed serial bus

encourages the distributed I/O and centralized processing

architecture we presented in [19]. One advantage of this

approach is that the I/O processing logic is simple and

requires little maintenance. Signal integrity is improved

because digitization occurs near the actuators, reducing the

potential for noise corruption.

Cable complexity is greatly reduced because distributed I/O

hardware is accessed through a serial link. This has several

benefits in a research environment. Less effort is required in

creating cables and breakout boards when new robots are

developed. Since I/O hardware is replicated, standard

wiring conventions are enforced. Robustness is improved

overall because there is less potential for wiring problems

and less cable drag affecting mobility.

Parallel buses limit the number of I/O channels that can be

connected to one computer. For example, an industrial-

grade computer can reliably drive four ISA cards, and the

number of channels per card is constrained to a modest

number by physical size. As a result, a teleoperated

dexterous robot system may need multiple computers to run.

In contrast, IEEE 1394 allows for centralized processing of

a large number of channels on a centralized computer, so

low-latency local data exchange can be used instead of

network communication. The integration allows for a

familiar software development environment and a standard

API; this alleviates researchers and programmers from

learning the idiosyncrasies of individual embedded micro-

controllers, so they can instead focus on higher-level tasks.

Furthermore, this architecture can more readily harness the

power of high performance computing.

This work is also intended to facilitate further research by

providing a generic interface and scalable mechanism for

fine-grain real-time control. Such a custom solution was

necessary for servoing the low power dc motors of the Snake

Robot [2] because an adequate commercial solution was not

available. The solution allows for flexible customization of

parameters, investigation of complex control laws, and high-

density distributed I/O. It is designed to ease the

development of dexterous surgical robots from both

hardware and software perspectives.

1.3. Organization

The control system presented in this paper uses a high speed

serial bus, IEEE 1394 (FireWire), to enable a large quantity

of I/O signals to be processed on a single computer and

cleanly distributed to the actuators. Its purpose is to provide

a convenient interface for fine-grain, real-time control of

highly dexterous surgical robots and to simplify software

development, while mitigating the issues associated with

unwieldy cabling.

This paper is organized as follows. Section 2 reviews some

of the related work. Section 3 describes the control system

in detail, while Section 4 demonstrates the performance of

the system. Future work is outlined in the concluding

remarks of Section 5.

2. RELATED WORK

2.1. IEEE 1394 for Real-Time Control

IEEE 1394 was selected because the protocol supports real-

time communication with guaranteed 8 kHz (125 µs) bus

cycles in isochronous mode (though asynchronous mode is

used instead as it allows for even faster access rates), and

because it allows for daisy-chaining of nodes. It is an

effective solution for real-time control, as shown in [6, 12],

and by its use in fly-by-wire systems [7], but it is not

necessarily the single best choice. One potential drawback

is the lack of high-flexibility cables for installation within

the moving structure of a robot arm, though for our

applications this is not a serious limitation.

The works of [6] and [12] focus on real-time control

bandwidth, but not on the physical benefits of distributed

I/O and centralized processing. The differences manifest in

their use of IEEE 1394 as a link to an onboard computer,

contrasting with our use of compact custom electronics. Our

work is most similar to that of [16], where custom FPGA-

based I/O boards communicate with the computer over IEEE

1394. The bandwidth was sufficient for at least six (possibly

12) dof to be updated at 1 kHz, with unit delay latency. On

the other hand, this study emphasizes the physical benefits

of the architecture, performance, and scalability. Ref [17]

notes that using IEEE 1394 for high bandwidth PET scan

data acquisition is viable due to the availability of powerful

commodity computers. We agree in principle, though our

respective applications are fundamentally different.

2.2. Ethernet-Based Alternatives to IEEE 1394

Fair bus access is incorporated into IEEE 1394 hardware;

bus arbitration in Ethernet is nondeterministic, but kilohertz-

range motor control is achievable on isolated networks with

software modifications [14, 15]. Several Ethernet variations

have been developed that make the medium very promising.

Powerlink (ethernet-powerlink.org) uses a bus manager that

schedules 200-µs cycles of isochronous and asynchronous

phases. SERCOS approached a communication bottleneck

in [9] with increasing axes and cycle rates, but its recent

combination with Ethernet (SERCOS-III) has endowed it

with the ability to update 70 axes every 250 µs.

A relative newcomer, EtherCAT (ethercat.org) is an

attractive protocol in which the nodes forward and append

packets on-the-fly using dedicated hardware and software,

resulting in the ability to communicate with 100 axes in 100

µs; [8] is an example showing its potential.

2.3. Other Alternatives to IEEE 1394

Many of the themes highlighted in this paper, including

distributed I/O, centralized computing, scalability, and form

factor, echo those of [10], which documents the MIRO

surgical robot developed by the German Aerospace Center

(DLR). Scalability in the MIRO robot is aided by the use of

SpaceWire, a 1 GB/s full duplex serial link with latency less

than 20 µs. Whereas SpaceWire has been developed by

major international space agencies for space-borne systems,

we prefer IEEE 1394 as it is a more accessible protocol for

research, and its performance is more than adequate for

demonstrating our claims. We are particularly more

interested in the software-induced latency and overcoming

this latency to enhance scalability.

PCI Express is a new serial interface designed to replace

computer expansion buses; a cable-based standard was not

fully established at the time of the designs presented in this

paper. PCI Express supports real-time applications such as

the industrial control example in [11].

High data rates are readily available with USB, but its

reliance on the host processor for bus level tasks

compromises its scalability in real-time control. Conversely,

IEEE 1394 self-manages the bus at the physical layer.

The Controller Area Network (CAN, can-cia.org) bus is

well-suited for real-time control and has been widely used,

but its bandwidth is limited to 1 Mbps.

3. SCALABLE PLATFORM FOR REAL-TIME

CONTROL

A key motivation for building a novel control system is to

ease the process of developing multi-axis robots in terms of

both hardware and software construction. The hardware

provides fine-grain real-time control over a large number of

motors, with I/O conversion tasks delegated to the actuator

sites. Using IEEE 1394, the hardware confines raw analog

signals to those sites and multiplexes the digital data for all

channels over a high speed serial connection to a single

computer. Meanwhile, the API provides a convenient and

reusable software interface to the hardware resources.

3.1. Hardware

Figure 3 provides an overview of the control system, with

I/O conversion distributed away from the computer to the

actuator sites. Each node on the bus contains multiple

channels (i.e. axes of control). Nodes can be added to the

system by daisy chaining or by direct connection to the

computer. The bus is attached to a real-time computer that

reads feedback signals from the channels, generates

actuation commands, and writes them to their respective

channels. The completed controller hardware for the Snake

Robot is shown in the photo (Figure 3). Note that this

particular hardware has been designed to physically

integrate on the top of the Snake Robot actuation units; we

will create other form factors for general use.

Figure 3 - Conceptual overview of the control system (top)

and a photo of the completed controller hardware (bottom)

Figure 4 - Block diagram of a node

Nodes—A node (Figure 4) contains circuitry for accessing

the I/O channels and handling bus transactions. IEEE 1394

allows up to 63 nodes per bus; each Snake Robot requires

two nodes, one for the actuation unit and the other for the Z-

Θ and five bar stages combined – a tally of four nodes for

two Snake Robots. Multiple buses can be used for yet larger

numbers of axes or for heterogeneous control environments.

Channels—One channel contains the I/O components (e.g.,

DAC, ADC, encoder counters) and power amplification

required to control one dc motor. The channel module

developed for the Snake Robot is shown in Figures 3 and 4;

it also includes a digital potentiometer that allows software

configuration for different motors, and a digital switch to

select between speed and torque control. These features

allow the node-channel set to be used with different robots.

The number of channels per node depends on the physical

distribution of joints and is limited by the memory and I/O

capacity of the resident FPGA. The low-end Altera Cyclone

II FPGA on the Snake Robot controller can comfortably

accommodate seven channels.

Field-Programmable Gate Array (FPGA)—Most of the

functionality of each node is implemented as firmware on

the FPGA, which serves as a low-latency interface between

the channel I/O ports and the bus. The FPGA receives

packets from the bus, responds to them, and communicates

with the I/O devices. The computer can access the channels

through control and data registers.

Figure 5 depicts the FPGA operation. A control cycle is

initiated when the computer requests a data transaction (read

sensors or write actuators). After the FPGA on the

addressed node receives the request, it responds immediately

with an acknowledgement (required by the IEEE 1394

protocol). For read requests, the FPGA then fetches data

from an intermediate buffer and sends them to the computer

with a timestamp. The contents of this buffer are refreshed

continuously to preserve real-time performance. For writes,

the FPGA loads the appropriate buffers and triggers the

corresponding channel I/O devices.

Other Components—The Texas Instruments TSB41AB2 is

an IEEE 1394 physical layer IC that can handle standard bus

speeds up to 400 Mbps. In addition to serving as the

interface to the physical bus, it generates the 49.152 MHz

clock signal used to synchronize data and clock the FPGA.

For noise isolation, and to facilitate emergency shutdowns,

the motor and digital voltages are drawn from separate

regulated supplies. Power from the bus is not used for these

reasons, as well as to simplify the development effort.

A conventional Linux PC is being used for development,

with the intent of migrating to a real-time version of Linux

(e.g. RTAI) to run the robot control software. Programs use

the libraw1394 library for bus transactions; RT-FireWire

[12] is being considered as an alternative.

Figure 5 - FPGA structure and operation

3.2. Software

We developed a generic, easy-to-use API for the control

hardware described above. The interface has the three-layer

hierarchy shown in Figure 6. The top layer consists of

abstract I/O operations that can be used for different robots.

It includes commands to latch all sensors and to apply all

outputs, which are often supported by the hardware (e.g.,

simultaneously sampled ADCs and double-buffered DACs).

All read/write operations are performed for a single axis at a

time, requiring just primitive C data types (e.g., int, long).

Figure 6 - General robot control API

The second layer, which implements the abstract interface

for the snake robot, is customized to work with data blocks,

since for efficiency reasons the data for the multiple axes of

a node are bundled into a single bus transaction. The second

layer provides access to axis-specific data via local buffers

that are filled by LatchAllSensors and emptied by

ApplyAllOutputs. So that a fixed block size can be used to

simplify the FPGA implementation, the second layer

maintains a valid bit for each axis that indicates to the FPGA

whether or not to update the corresponding axis during a

write transaction. The bottom layer contains function calls

to the IEEE 1394 API library (libraw1394). By carefully

designing a general robot control API, the developed

software can be easily maintained, and the system can be

used in other surgical robots.

4. RESULTS AND DISCUSSION

The FPGA response to read requests is implemented such

that there is no protocol delay (i.e. no busy wait) between

receiving a read request and generating a response.

Similarly, there is no delay between the receipt of a write

request and the start of the write. The I/O device access

times are negligible (~2.5 µs, deterministic) relative to the

system bandwidth, so as a result loopback tests of the DAC-

to-ADC pair and digital I/O consistently return the

appropriate values. Bus contention is not expected because

the computer is implemented as the bus master and the

nodes as slaves.

A read transaction entails a request from the computer, an

acknowledgment from the node, and a data response from

the node (a concatenated read in IEEE 1394—there is also a

final acknowledgement from the computer to the node). A

write transaction is the same, except for the response (a

unified write). These transaction types were chosen for their

ease of implementation and suitability for the application.

We previously found that the latencies for per-axis bus

transactions were significant [18]. Using quadlet (32 data

bits) transactions, the average transaction time was 34.5 µs

for a read and 30.2 µs for a write. In a straightforward

implementation (read-control-write) for a seven-axis robot, a

combined read/write time of about 453 µs leaves only 547

µs for control computations at 1 kHz, and is not even

feasible at 8 kHz. Given the bus speed of 400 Mbps, we

concluded that software overheads were a predominant

factor in the latency, as in [13]. As we concluded in [19], it

became necessary to bundle the data for multiple axes into

blocks in order to overcome these limitations.

Figure 7 shows a raw sampling of read/write times over the

full range of block sizes (in quadlets, the smallest unit in

IEEE 1394), up to the maximum of 512 quadlets for the 400

Mbps mode. The tests were run with one node connected to

a 2 GHz Pentium 4 PC by a 6’ cable. Trend lines added to

the plots indicate that the base latency is about 33.2 µs for a

read and 30.7 µs for a write, which closely matches our

previous findings.

Figure 7 - IEEE 1394 transaction times vs. block size

From the slopes we compute the average speed to be

roughly 360 and 290 Mbps for reads and writes respectively.

Neither value reaches the nominal 400 Mbps rate due to

transmission overhead, but it defies intuition that reads are

faster than writes since read transactions are slightly more

complicated and incur greater initial latency. A possible

explanation may involve differences between how the

computer and FPGA request bus access. We intend to

resolve this anomaly in future work. At any rate, the results

suggest that the number of axes can be scaled significantly

with negligible incremental time delay.

High-valued outliers and variability in the transaction times

(~20 µs, judging from the noisiness of the plots) may be due

to the operating system, as we are using conventional Linux

for development purposes. The latter observation may also

be explained by variability in obtaining bus access.

5. CONCLUSIONS AND FUTURE WORK

Though parallel buses such as ISA, Q-Bus, Multibus, and

VME have become tried-and-true interfaces for robot

control, they are increasingly deprecated with the emergence

of IEEE 1394, PCI Express, and Ethernet-based protocols,

which feature greatly simplified cabling. These high speed

serial networks provide higher performance than traditional

field buses, such as CAN, SERCOS, and RS-485, which

have also been used for real-time control.

The IEEE 1394 bus helps reduce wiring complexity, making

systems more robust and scalable to many axes of control.

The consolidation of processing tasks eases intra-robot

communication (e.g. master-slave) and allows systems to

utilize ever-advancing computing power.

This paper describes a scalable controller design based on

IEEE 1394 for communication between the computer and

actuated joints. The advantages of distributing I/O to less

obtrusive sites and centralizing processing are discussed.

The concept was demonstrated by a custom controller for a

small snake robot for laryngeal surgery. The results confirm

real-time performance; the use of large packets carrying data

for all nodes may further mitigate the effect of transaction

latencies due to software overhead.

Though the described control system is not necessarily a

novel design given existing technologies, we contend that it

will ease the development of dexterous robots and allow

researchers to experiment with more robot-assisted surgical

tasks. For example, an additional arm for the Snake Robot

can be more conveniently integrated and used for tasks such

as camera manipulation. New applications being considered

include dexterous ultrasound imaging and ablation. The

API will be compatible with a standard medical robotics

framework, the Surgical Assistant Workstation [5].

ACKNOWLEDGMENT

We thank Hamid Wasti of Regan Designs, Inc. (Coeur

d’Alene, Idaho) for his help with the design and layout of

the controller boards, and Renqiu Huang for his assistance

with the development of software libraries. This work was

funded by the National Science Foundation (NSF) under

Engineering Research Center grant #EEC9731748, NSF

grant #MRI0722943, and by the Johns Hopkins University

internal funds.

REFERENCES

[1] Simaan, N., R. Taylor, and P. Flint, “A dexterous

system for laryngeal surgery,” IEEE Robotics &

Automation, vol. 1, pp. 351-357, 2004.

[2] Kapoor, A., N. Simaan, and P. Kazanzides, “A system

for speed and torque control of DC motors with application

to small snake robots,” IEEE Mechatronics and Robotics,

Aachen, Germany, Sep 2004.

[3] Kapoor, A., “Motion constrained control of robots for

dexterous surgical tasks,” Ph.D. dissertation, Johns Hopkins

Univ., Sep 2007.

[4] Simaan, N., R. Taylor, and P. Flint, “High dexterity

snake-like robotic slaves for minimally invasive telesurgery

of the upper airway,” MICCAI, Rennes-Saint-Malo, France,

pp. 17-24, Sep 2004.

[5] Vagvolgyi, B., S. DiMaio, A. Deguet, P. Kazanzides,

R. Kumar, C. Hasser, and R. Taylor, “The Surgical Assistant

Workstation,” MICCAI Workshop on Systems and Arch. for

Computer Assisted Interventions (online at

http://hdl.handle.net/10380/1466), Sep 2008.

[6] Sarker, M., C. Kim, S. Baek, and B. You, “An IEEE-

1394 based real-time robot control system for efficient

controlling of humanoids,” IEEE Intelligent Robots and

Systems, pp. 1416-1421, Beijing, China, Oct 2006.

[7] Baltazar, G. and G. Chapelle, “Firewire in modern

integrated military avionics,” IEEE Aerospace and

Electronic Systems Magazine, vol. 16, no. 11, pp.12-16,

Nov 2001.

[8] Robertz, S., K. Nilsson, R. Henriksson, and A.

Blomdell, “Industrial robot motion control with real-time

Java and EtherCAT," IEEE Emerging Technologies &

Factory Automation, pp. 1453-1456, Sep 2007.

[9] Lin, S., C. Ho, and Y. Tzou, “Distributed motion

control using real-time network communication techniques,”

International Power Electronics and Motion Control, vol. 2,

pp. 843-847, Aug 2000.

[10] Hagn, U., M. Nickl, S. Jorg, G. Passig, T. Bahls, A.

Nothhelfer, F. Hacker, L. Le-Tien, A. Albu-Schaffer, R.

Konietschke, M. Grebenstein, R. Warpup, R. Haslinger, M.

Frommberger, and G. Hirzinger, “The DLR MIRO: a

versatile lightweight robot for surgical applications,”

Industrial Robot: An Int’l Journal, vol. 35, no. 4, pp. 324-

336, 2008.

[11] Szydlowski, C., “Implementing PCI Express for

industrial control,” RTC Magazine, vol. 13, Sep 2004.

[12] Zhang, Y., B. Orlic, P. Visser, and J. Broenink, “Hard

real-time networking on FireWire,” RT Linux Workshop,

Lille, FR, Nov 2005.

[13] Sarker, M., C. Kim, J. Cho, and B. You, “Development

of a network-based real-time robot control system over

IEEE 1394: using open source software platform,” IEEE

Mechatronics, pp. 563-568, Jul 2006.

[14] Schneider, S., “Making Ethernet work in real time,”

Sensors Magazine, vol. 17, no. 11, Nov 2000.

[15] Kerkes, J., “Real-time Ethernet,” Embedded Systems

Design, vol. 14, no. 1, Jan 2001.

[16] Pratt, G., P. Willisson, C. Bolton, and A. Hoffman,

“Late motor processing in low-impedance robots:

impedance control of series-elastic actuators,” American

Control Conference, vol. 4, pp. 3245-3251, Jun-Jul 2004.

[17] Lewellen, T., C. Laymon, R. Miyaoka, K. Lee, and P.

Kinahan, “Design of a Firewire based data acquisition

system for use in animal PET scanners,” IEEE Nuclear

Science Symposium Conference Record, vol. 4, pp. 1974-

1978, Nov 2001.

[18] Thienphrapa, P. and P. Kazanzides, “A distributed I/O

low-level controller for highly-dexterous snake robots,”

IEEE BioCAS, pp. 9-12, Nov 2008.

[19] Kazanzides, P. and P. Thienphrapa, “Centralized

processing and distributed I/O for robot control,” IEEE

TePRA, pp. 84-88, Nov 2008.

