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Abstract—The requisite cabling and control processing for 

surgical robots can become unwieldy as dexterity is 

increased, due to the additional degrees of freedom.  

Motivated by dexterous snake-like robots for minimally 

invasive surgery, this paper details the development of a 

low-level control system that uses IEEE 1394 (FireWire), 

linking the computer to low-latency field-programmable 

gate arrays, to distribute I/O while centralizing all control 

computations.  A standard programming interface is defined 

as part of the control system to enhance its scalability.  

These features increase the viability of complex surgical 

robots and ease their development by reducing cables and 

enabling the processing of many axes of control on a single 

computer. 

 

1. INTRODUCTION 

Minimally invasive surgery (MIS) is often beneficial due to 

reduction of trauma, leading to fewer complications and 

shorter hospital stays.  However, it poses a number of 

challenges for surgeons, including constrained workspaces, 

limited field of view, and lack of dexterity at the distal end.  

Existing MIS tools are rigid, difficult to manipulate through 

narrow insertion tubes, and they lack adequate suturing and 

tissue reconstruction capability.  In such situations, the 

efficacy of a surgical robot is strongly tied to its dexterity. 

Research on the Snake Robot [1] seeks to improve MIS of 

the throat and upper airways by providing surgeons with 

highly dexterous robotically-controlled tools.  This dexterity 

is achieved by incorporating more degrees of freedom (dof).  

More sophisticated surgical tasks can be accomplished by 

increasing dof, but the corresponding hardware increase 

imposes a practical limit on the exploration of these ideas.  

Similarly, research on different types of multi-axis surgical 

robots is often mired in the hardware construction effort.  In 

response to these difficulties, this paper presents the 

development of a system that is well suited for real-time 

control of robots with many axes of control. 

 

Figure 1 - Snake Robot prototype [3] 

 

Figure 2 - Anatomy of a snake-like unit [2] 



  

1.1. Background 

A unique design targeted for MIS of the upper airways, the 

Snake Robot features small, dexterous snake-like units 

(SLUs).  To avoid cluttering the work area, these SLUs are 

attached to a hollow, narrow, meter-long shaft containing its 

wires, and appear at the distal end of a laryngoscope; this 

shaft-SLU assembly is teleoperable (see Figure 1). 

The Snake Robot is an eight-dof (11-actuator) manipulator.  

Multiple instances may be used for surgical tasks, depending 

on the application.  The distal end of each manipulator 

consists of two SLUs connected in series; each SLU is 

constructed using four super-elastic NiTi tubes.  The 

anatomy of an SLU is shown in Figure 2.  The center tube, 

the primary backbone, is connected to all discs, including 

the base disc, end disc, and intervening spacer discs. 

Three tubes surround the primary backbone at equally-

spaced distances, forming the secondary backbones.  These 

are fixed to only the end disc and are free to glide through 

holes in the intermediate spacer discs.  Two dof result from 

pushing and pulling the secondary backbones using three 

actuators located at the proximal end.  The push-pull 

actuation modes help prevent the backbones from buckling 

while satisfying structural statics [2].  A second 2-dof SLU 

is appended to the end of the first.  The secondary 

backbones of this second SLU pass through the hollow 

secondary backbones of the first.  Attached to the end of the 

second SLU is a gripper that is actuated via a wire passed 

through the hollow central backbone.  This mechanical 

composition allows for a high payload capacity with a small 

size [3].  The existing SLUs are 4 mm in diameter. 

The aforementioned actuators (seven actuators for four dof 

and a gripper) are encased atop the shaft in a compact 

cylindrical actuation unit (shown in Figure 1).  The shaft-

actuation unit assembly itself can be guided with four dof 

due to four actuators, leading to eight dof total.  The Z-Θ 

stage allows for translation along and rotation about the 

shaft respectively.  A passive universal joint mounted on a 

five bar mechanism gives the shaft XY mobility.  This stage 

also stabilizes the robot against lateral perturbations. 

Each Snake Robot is actuated by 11 dc motors, accounted 

for by two three-axis SLUs, a gripper, a two-axis Z-Θ stage, 

and a two-axis five bar mechanism.  Two seven-axis da 

Vinci masters are used to command two Snake slaves for 

bimanual control.  The pair of da Vinci masters we are using 

is an engineering version that did not originally include a 

controller. 

The control system for the Snake Robot must be scalable in 

order to handle 36 axes (i.e. two 11-axis Snakes and two 

seven-axis da Vinci masters).  A significant reduction in 

dimensionality and hardware complexity was achieved via 

the push-pull actuation of flexible wires combined with 

derived kinematics [1], as opposed to actuation of several 

precision joints.  Nevertheless, the number of axes for the 

Snake Robot remains considerable and can only increase as 

robots are devised for more sophisticated surgical tasks. 

1.2. Motivations and Objectives 

The efforts presented here address important issues revealed 

by our previous work [18], which itself originated from the 

need to improve the old multi-axis controller of the Snake 

Robot [2] and replicate the controller for other research 

projects.  The old controller utilizes a centralized I/O 

arrangement, whereby command and feedback signals are 

transmitted in raw analog form over long cables running 

between the robot and the computer.  Though the design is 

conceptually straightforward, the cumbersome wiring 

associated with it introduces complications such as noise, 

cable drag, reduced reliability, and greater construction 

effort.  The debug space is vast as there are many candidates 

for connectivity problems, so this approach limits the ability 

to develop increasingly dexterous surgical robots. 

The long term benefits of developing a control system using 

IEEE 1394 are multifold.  The high speed serial bus 

encourages the distributed I/O and centralized processing 

architecture we presented in [19].  One advantage of this 

approach is that the I/O processing logic is simple and 

requires little maintenance.  Signal integrity is improved 

because digitization occurs near the actuators, reducing the 

potential for noise corruption. 

Cable complexity is greatly reduced because distributed I/O 

hardware is accessed through a serial link.  This has several 

benefits in a research environment.  Less effort is required in 

creating cables and breakout boards when new robots are 

developed.  Since I/O hardware is replicated, standard 

wiring conventions are enforced.  Robustness is improved 

overall because there is less potential for wiring problems 

and less cable drag affecting mobility. 

Parallel buses limit the number of I/O channels that can be 

connected to one computer.  For example, an industrial-

grade computer can reliably drive four ISA cards, and the 

number of channels per card is constrained to a modest 

number by physical size.  As a result, a teleoperated 

dexterous robot system may need multiple computers to run. 

In contrast, IEEE 1394 allows for centralized processing of 

a large number of channels on a centralized computer, so 

low-latency local data exchange can be used instead of 

network communication.  The integration allows for a 

familiar software development environment and a standard 

API; this alleviates researchers and programmers from 

learning the idiosyncrasies of individual embedded micro-

controllers, so they can instead focus on higher-level tasks.  

Furthermore, this architecture can more readily harness the 

power of high performance computing. 

This work is also intended to facilitate further research by 

providing a generic interface and scalable mechanism for 

fine-grain real-time control.  Such a custom solution was 

necessary for servoing the low power dc motors of the Snake 

Robot [2] because an adequate commercial solution was not 



  

available.  The solution allows for flexible customization of 

parameters, investigation of complex control laws, and high-

density distributed I/O.  It is designed to ease the 

development of dexterous surgical robots from both 

hardware and software perspectives. 

1.3. Organization 

The control system presented in this paper uses a high speed 

serial bus, IEEE 1394 (FireWire), to enable a large quantity 

of I/O signals to be processed on a single computer and 

cleanly distributed to the actuators.  Its purpose is to provide 

a convenient interface for fine-grain, real-time control of 

highly dexterous surgical robots and to simplify software 

development, while mitigating the issues associated with 

unwieldy cabling. 

This paper is organized as follows.  Section 2 reviews some 

of the related work.  Section 3 describes the control system 

in detail, while Section 4 demonstrates the performance of 

the system.  Future work is outlined in the concluding 

remarks of Section 5. 

2. RELATED WORK 

2.1. IEEE 1394 for Real-Time Control 

IEEE 1394 was selected because the protocol supports real-

time communication with guaranteed 8 kHz (125 µs) bus 

cycles in isochronous mode (though asynchronous mode is 

used instead as it allows for even faster access rates), and 

because it allows for daisy-chaining of nodes.  It is an 

effective solution for real-time control, as shown in [6, 12], 

and by its use in fly-by-wire systems [7], but it is not 

necessarily the single best choice.  One potential drawback 

is the lack of high-flexibility cables for installation within 

the moving structure of a robot arm, though for our 

applications this is not a serious limitation. 

The works of [6] and [12] focus on real-time control 

bandwidth, but not on the physical benefits of distributed 

I/O and centralized processing.  The differences manifest in 

their use of IEEE 1394 as a link to an onboard computer, 

contrasting with our use of compact custom electronics.  Our 

work is most similar to that of [16], where custom FPGA-

based I/O boards communicate with the computer over IEEE 

1394.  The bandwidth was sufficient for at least six (possibly 

12) dof to be updated at 1 kHz, with unit delay latency.  On 

the other hand, this study emphasizes the physical benefits 

of the architecture, performance, and scalability.  Ref [17] 

notes that using IEEE 1394 for high bandwidth PET scan 

data acquisition is viable due to the availability of powerful 

commodity computers.  We agree in principle, though our 

respective applications are fundamentally different. 

2.2. Ethernet-Based Alternatives to IEEE 1394 

Fair bus access is incorporated into IEEE 1394 hardware; 

bus arbitration in Ethernet is nondeterministic, but kilohertz-

range motor control is achievable on isolated networks with 

software modifications [14, 15].  Several Ethernet variations 

have been developed that make the medium very promising.  

Powerlink (ethernet-powerlink.org) uses a bus manager that 

schedules 200-µs cycles of isochronous and asynchronous 

phases.  SERCOS approached a communication bottleneck 

in [9] with increasing axes and cycle rates, but its recent 

combination with Ethernet (SERCOS-III) has endowed it 

with the ability to update 70 axes every 250 µs. 

A relative newcomer, EtherCAT (ethercat.org) is an 

attractive protocol in which the nodes forward and append 

packets on-the-fly using dedicated hardware and software, 

resulting in the ability to communicate with 100 axes in 100 

µs; [8] is an example showing its potential. 

2.3. Other Alternatives to IEEE 1394 

Many of the themes highlighted in this paper, including 

distributed I/O, centralized computing, scalability, and form 

factor, echo those of [10], which documents the MIRO 

surgical robot developed by the German Aerospace Center 

(DLR).  Scalability in the MIRO robot is aided by the use of 

SpaceWire, a 1 GB/s full duplex serial link with latency less 

than 20 µs.  Whereas SpaceWire has been developed by 

major international space agencies for space-borne systems, 

we prefer IEEE 1394 as it is a more accessible protocol for 

research, and its performance is more than adequate for 

demonstrating our claims.  We are particularly more 

interested in the software-induced latency and overcoming 

this latency to enhance scalability. 

PCI Express is a new serial interface designed to replace 

computer expansion buses; a cable-based standard was not 

fully established at the time of the designs presented in this 

paper.  PCI Express supports real-time applications such as 

the industrial control example in [11]. 

High data rates are readily available with USB, but its 

reliance on the host processor for bus level tasks 

compromises its scalability in real-time control.  Conversely, 

IEEE 1394 self-manages the bus at the physical layer.   

The Controller Area Network (CAN, can-cia.org) bus is 

well-suited for real-time control and has been widely used, 

but its bandwidth is limited to 1 Mbps. 

3. SCALABLE PLATFORM FOR REAL-TIME 

CONTROL 

A key motivation for building a novel control system is to 

ease the process of developing multi-axis robots in terms of 

both hardware and software construction.  The hardware 

provides fine-grain real-time control over a large number of 

motors, with I/O conversion tasks delegated to the actuator 

sites.  Using IEEE 1394, the hardware confines raw analog 

signals to those sites and multiplexes the digital data for all 

channels over a high speed serial connection to a single 

computer.  Meanwhile, the API provides a convenient and 

reusable software interface to the hardware resources. 



  

3.1. Hardware 

Figure 3 provides an overview of the control system, with 

I/O conversion distributed away from the computer to the 

actuator sites.  Each node on the bus contains multiple 

channels (i.e. axes of control).  Nodes can be added to the 

system by daisy chaining or by direct connection to the 

computer.  The bus is attached to a real-time computer that 

reads feedback signals from the channels, generates 

actuation commands, and writes them to their respective 

channels.  The completed controller hardware for the Snake 

Robot is shown in the photo (Figure 3).  Note that this 

particular hardware has been designed to physically 

integrate on the top of the Snake Robot actuation units; we 

will create other form factors for general use. 

 

 

Figure 3 - Conceptual overview of the control system (top) 

and a photo of the completed controller hardware (bottom) 

 

Figure 4 - Block diagram of a node 

Nodes—A node (Figure 4) contains circuitry for accessing 

the I/O channels and handling bus transactions.  IEEE 1394 

allows up to 63 nodes per bus; each Snake Robot requires 

two nodes, one for the actuation unit and the other for the Z-

Θ and five bar stages combined – a tally of four nodes for 

two Snake Robots.  Multiple buses can be used for yet larger 

numbers of axes or for heterogeneous control environments. 

Channels—One channel contains the I/O components (e.g., 

DAC, ADC, encoder counters) and power amplification 

required to control one dc motor.  The channel module 

developed for the Snake Robot is shown in Figures 3 and 4; 

it also includes a digital potentiometer that allows software 

configuration for different motors, and a digital switch to 

select between speed and torque control.  These features 

allow the node-channel set to be used with different robots. 

The number of channels per node depends on the physical 

distribution of joints and is limited by the memory and I/O 

capacity of the resident FPGA.  The low-end Altera Cyclone 

II FPGA on the Snake Robot controller can comfortably 

accommodate seven channels. 

Field-Programmable Gate Array (FPGA)—Most of the 

functionality of each node is implemented as firmware on 

the FPGA, which serves as a low-latency interface between 

the channel I/O ports and the bus.  The FPGA receives 

packets from the bus, responds to them, and communicates 

with the I/O devices.  The computer can access the channels 

through control and data registers. 

Figure 5 depicts the FPGA operation.  A control cycle is 

initiated when the computer requests a data transaction (read 

sensors or write actuators).  After the FPGA on the 

addressed node receives the request, it responds immediately 

with an acknowledgement (required by the IEEE 1394 

protocol).  For read requests, the FPGA then fetches data 

from an intermediate buffer and sends them to the computer 

with a timestamp.  The contents of this buffer are refreshed 

continuously to preserve real-time performance.  For writes, 

the FPGA loads the appropriate buffers and triggers the 

corresponding channel I/O devices. 

Other Components—The Texas Instruments TSB41AB2 is 

an IEEE 1394 physical layer IC that can handle standard bus 

speeds up to 400 Mbps.  In addition to serving as the 

interface to the physical bus, it generates the 49.152 MHz 

clock signal used to synchronize data and clock the FPGA. 

For noise isolation, and to facilitate emergency shutdowns, 

the motor and digital voltages are drawn from separate 

regulated supplies.  Power from the bus is not used for these 

reasons, as well as to simplify the development effort. 

A conventional Linux PC is being used for development, 

with the intent of migrating to a real-time version of Linux 

(e.g. RTAI) to run the robot control software.  Programs use 

the libraw1394 library for bus transactions; RT-FireWire 

[12] is being considered as an alternative. 



  

 

Figure 5 - FPGA structure and operation 

3.2. Software 

We developed a generic, easy-to-use API for the control 

hardware described above.  The interface has the three-layer 

hierarchy shown in Figure 6.  The top layer consists of 

abstract I/O operations that can be used for different robots.  

It includes commands to latch all sensors and to apply all 

outputs, which are often supported by the hardware (e.g., 

simultaneously sampled ADCs and double-buffered DACs).  

All read/write operations are performed for a single axis at a 

time, requiring just primitive C data types (e.g., int, long). 

 

Figure 6 - General robot control API 

The second layer, which implements the abstract interface 

for the snake robot, is customized to work with data blocks, 

since for efficiency reasons the data for the multiple axes of 

a node are bundled into a single bus transaction.  The second 

layer provides access to axis-specific data via local buffers 

that are filled by LatchAllSensors and emptied by 

ApplyAllOutputs.  So that a fixed block size can be used to 

simplify the FPGA implementation, the second layer 

maintains a valid bit for each axis that indicates to the FPGA 

whether or not to update the corresponding axis during a 

write transaction.  The bottom layer contains function calls 

to the IEEE 1394 API library (libraw1394). By carefully 

designing a general robot control API, the developed 

software can be easily maintained, and the system can be 

used in other surgical robots. 

4. RESULTS AND DISCUSSION 

The FPGA response to read requests is implemented such 

that there is no protocol delay (i.e. no busy wait) between 

receiving a read request and generating a response.  

Similarly, there is no delay between the receipt of a write 

request and the start of the write.  The I/O device access 

times are negligible (~2.5 µs, deterministic) relative to the 

system bandwidth, so as a result loopback tests of the DAC-

to-ADC pair and digital I/O consistently return the 

appropriate values.  Bus contention is not expected because 

the computer is implemented as the bus master and the 

nodes as slaves. 

A read transaction entails a request from the computer, an 

acknowledgment from the node, and a data response from 

the node (a concatenated read in IEEE 1394—there is also a 

final acknowledgement from the computer to the node).  A 

write transaction is the same, except for the response (a 

unified write).  These transaction types were chosen for their 

ease of implementation and suitability for the application. 

We previously found that the latencies for per-axis bus 

transactions were significant [18].  Using quadlet (32 data 

bits) transactions, the average transaction time was 34.5 µs 

for a read and 30.2 µs for a write.  In a straightforward 

implementation (read-control-write) for a seven-axis robot, a 

combined read/write time of about 453 µs leaves only 547 

µs for control computations at 1 kHz, and is not even 

feasible at 8 kHz.  Given the bus speed of 400 Mbps, we 

concluded that software overheads were a predominant 

factor in the latency, as in [13].  As we concluded in [19], it 

became necessary to bundle the data for multiple axes into 

blocks in order to overcome these limitations. 

Figure 7 shows a raw sampling of read/write times over the 

full range of block sizes (in quadlets, the smallest unit in 

IEEE 1394), up to the maximum of 512 quadlets for the 400 

Mbps mode.  The tests were run with one node connected to 

a 2 GHz Pentium 4 PC by a 6’ cable.  Trend lines added to 

the plots indicate that the base latency is about 33.2 µs for a 

read and 30.7 µs for a write, which closely matches our 

previous findings. 



  

 

Figure 7 - IEEE 1394 transaction times vs. block size 

From the slopes we compute the average speed to be 

roughly 360 and 290 Mbps for reads and writes respectively.  

Neither value reaches the nominal 400 Mbps rate due to 

transmission overhead, but it defies intuition that reads are 

faster than writes since read transactions are slightly more 

complicated and incur greater initial latency.  A possible 

explanation may involve differences between how the 

computer and FPGA request bus access.  We intend to 

resolve this anomaly in future work.  At any rate, the results 

suggest that the number of axes can be scaled significantly 

with negligible incremental time delay. 

High-valued outliers and variability in the transaction times 

(~20 µs, judging from the noisiness of the plots) may be due 

to the operating system, as we are using conventional Linux 

for development purposes.  The latter observation may also 

be explained by variability in obtaining bus access. 

5. CONCLUSIONS AND FUTURE WORK 

Though parallel buses such as ISA, Q-Bus, Multibus, and 

VME have become tried-and-true interfaces for robot 

control, they are increasingly deprecated with the emergence 

of IEEE 1394, PCI Express, and Ethernet-based protocols, 

which feature greatly simplified cabling.  These high speed 

serial networks provide higher performance than traditional 

field buses, such as CAN, SERCOS, and RS-485, which 

have also been used for real-time control. 

The IEEE 1394 bus helps reduce wiring complexity, making 

systems more robust and scalable to many axes of control.  

The consolidation of processing tasks eases intra-robot 

communication (e.g. master-slave) and allows systems to 

utilize ever-advancing computing power. 

This paper describes a scalable controller design based on 

IEEE 1394 for communication between the computer and 

actuated joints.  The advantages of distributing I/O to less 

obtrusive sites and centralizing processing are discussed.  

The concept was demonstrated by a custom controller for a 

small snake robot for laryngeal surgery.  The results confirm 

real-time performance; the use of large packets carrying data 

for all nodes may further mitigate the effect of transaction 

latencies due to software overhead. 

Though the described control system is not necessarily a 

novel design given existing technologies, we contend that it 

will ease the development of dexterous robots and allow 

researchers to experiment with more robot-assisted surgical 

tasks.  For example, an additional arm for the Snake Robot 

can be more conveniently integrated and used for tasks such 

as camera manipulation.  New applications being considered 

include dexterous ultrasound imaging and ablation.  The 

API will be compatible with a standard medical robotics 

framework, the Surgical Assistant Workstation [5]. 
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